- •1. Основные понятия и этапы са. Основные понятия са
- •Этапы системного анализа
- •2. Операция и ее составляющие. Этапы ио.
- •3. Применение научных методов Этапы операционного проекта
- •6. Внедрение результатов исследования.
- •3. Виды математических моделей ио, примеры.
- •4. Состязательные задачи. Решение игры 2-х лиц.
- •5. Классификация и характеристики смо. Понятие системы массового обслуживания
- •Поток событий и его свойства
- •Транспортная задача
- •8. Формы представления задач лп и способы приведения к ним. Каноническая форма задач лп
- •Стандартная форма задачи лп
- •9. Основные понятия лп, свойства задач лп. Постановка задачи
- •Основные понятия лп. Свойства задач лп
- •10. Геометрия задач лп, базисные решения, вырожденность. Геометрия задач лп
- •Выделение вершин допустимого множества
- •11. Понятие базиса, переход от одного базисного решения к другому.
- •Построение начального базисного решения
- •13. Алгоритм симплекс-метода.
- •14. Двойственность в лп, построение моделей двойственных задач. Двойственность задач лп
- •Запись двойственной задачи в симметричном случае
- •Запись двойственной задачи в общем случае
- •15. Экономическая интерпретация двойственной задачи. Двойственный симплекс-метод. Интерпретация двойственной задачи
- •Двойственный симплекс-метод
- •16. Теоремы двойственности.
- •17. Учет двусторонних ограничений, модифицир. Симплекс-метод. Учет двусторонних ограничений
- •М одифицированный алгоритм
- •18. Параметрический анализ вектора ограничений.
- •19. Параметрический анализ коэффициентов линейной формы.
- •20. Модели транспортных задач и их хар-ка, условия разрешимости. Простейшая транспортная задача (т-задача)
- •Транспортная задача с ограниченными пропускными способностями (Td - задача)
- •Многоиндексные задачи
- •Транспортные задачи по критерию времени
- •21. Построение начального плана перевозок т-задачи
- •Правило северо-западного угла
- •Правило минимального элемента.
- •Метод Фогеля
- •22. Обоснование метода потенциалов. Переход от одного плана перевозок к другому
- •Признак оптимальности
- •23. Алгоритм метода потенциалов
- •24. Двойственность т-задач, эконом. Интерпретация потенциалов. Двойственная пара транспортных задач
- •Экономическая интерпретация потенциалов
- •25. Метод потенциалов для Td-задачи.
- •26. Приведение открытой модели транспортной задачи к закрытой.
- •27. Трансп. Задачи в сетевой постановке, задача о кратчайшем пути. Транспортные задачи в сетевой постановке (транспортные сети)
- •Алгоритм Дейкстры-Форда:
- •28. Задача о максимальном потоке.
- •29. Метод декомпозиции Данцига-Вулфа в общем случае.
- •30. Метод декомпозиции транспортных задач
- •31. Постановка задач стохастического программирования
- •32. Целочисленное программирование: Особенности, концепции точных и приближенных методов решений.
- •Проблема целочисленности
- •33. Методы отсечений.
- •34. Метод ветвей и границ.
- •35. Аддитивный метод.
- •36. Нелинейное программирование (нлп): постановка, классы задач нлп, условия оптимальности. Характеристика задач
- •Условия оптимальности
- •37. Квадратичное программирование.
- •38. Сепарабельное и дробно-линейное программирование. Сепарабельное программирование (сп)
- •Задачи дробно-линейного программирования
- •39. Методы покоординатного спуска и Хука-Дживса. Метод Гаусса-Зейделя (покоординатного спуска)
- •Метод Хука-Дживса (метод конфигураций)
- •40. Симплексный метод поиска.
- •41. Градиентные методы.
- •Методы сопряженных направлений
- •Методы Пауэла, Флетчера-Ривса, Девидона-Флетчера-Пауэла
- •43. Методы случайного поиска.
- •Алгоритм с возвратом при неудачном шаге
- •Алгоритм с обратным шагом
- •Алгоритм наилучшей пробы
- •Алгоритм статистического градиента
- •44. Метод проектирования градиентов.
- •45. Генетические алгоритмы
- •46. Методы штрафных и барьерных функций. Метод штрафных функций
- •Метод барьерных функций
- •47. Динамическое программирование (дп): принцип оптимальности, функциональное уравнение, процедура дп.
- •Как работает метод дп
- •Функциональное уравнение дп
- •48. Дп: задача распределения ресурсов, достоинства дп.
- •49. Дп: задача о кратчайшем пути и с мультипликативным критерием. Задача о кратчайшем пути
- •Задача с мультипликативным критерием
- •50. Дп: организация выпуска m видов продукции.
- •51. Дп: задача об инвестициях.
- •52. Дп: многомерные задачи и проблемы решения.
- •53. Дп: снижение размерности с помощью множителей Лагранжа
- •54. Задачи спу: построение сети и временной анализ.
- •Временной анализ (для детерминированной сети)
- •55. Задачи спу: оптимизация.
- •56. Многокритериальные задачи: постановка, проблемы, основные понятия, методы.
- •Методы многокритериальной оптимизации
- •57. Многокрит. Задачи: функция полезности, лексикографический метод. Функция полезности
- •Решение на основе лексикографического упорядочения критериев
- •58. Методы главного критерия, свертки, идеальной точки, целевого програм-я. Метод главного критерия
- •Линейная свертка
- •Метод идеальной точки
- •Целевое программирование (цп)
- •59. Диалоговые методы решения задач по многим критериям.
- •Метод уступок
- •Интерактивное компромиссное программирование
47. Динамическое программирование (дп): принцип оптимальности, функциональное уравнение, процедура дп.
К
онцепция
метода проистекает из следующего
свойства оптимального решения. Пусть
оптимальный путь из точки A
в точку E
проходит через точки B,
С
и D.
Тогда любая часть этого пути является
оптимальным путем. Принцип
оптимальности
- оптимальное управление определяется
конечной целью управления и состоянием
системы в рассматриваемый момент,
независимо от того, каким образом она
пришла в это состояние; при фиксированном
состоянии системы последующее оптимальное
решение не зависит от ее предыстории.
Он позволяет разложить задачу на ряд
задач значительно меньшей размерности.
Имеются в виду задачи, которые могут
быть представлены как многошаговые.
Такие задачи описываются математической
моделью, в которой и критерий, и ограничения
являются составными.
Под составной понимается функция f,
образованная частными функциями
(подфункциями) fi,
к которым применен один и тот же оператор
вхождения (например, оператор сложения),
т.е. f=(<оператор>
<f1,
f2,...,fm>).
Количество шагов в задаче определяется числом подфункций критерия. При разбиении задачи на шаги состояние (параметр состояния) служит связующим звеном между смежными шагами. Состояние описывается теми переменными системы, которые зависят от решения на предшествующем шаге и знание которых достаточно для принятия решения на очередном шаге.
Как работает метод дп
Д
П
предлагает конструировать оптимальный
путь по частям - представить задачу как
многошаговую. Разместим условно все
входы на одной вертикальной прямой, все
узлы, которые встречаются первыми на
пути от входов к выходам, - на другой
прямой. Также поступим со второй и
другими группами узлов и, наконец, с
выходами. Получим схему лабиринта.
Построение оптимального пути можно начинать с 1-го или 4-го шага, но предпочтительнее с 4-го - обратная прогонка. Будем искать оптимальное решение для каждого из узлов, в котором можем оказаться перед 4-м шагом (это узлы 8,9 и 10). Фиксируем узел 8 и из четырех значений времени перехода из него к выходам выбираем наименьшее. Соответствующий переход может принадлежать оптимальному пути. Узлу 8 приписываем этот переход и найденное минимальное время, которое обозначим как t8. Аналогично поступаем, фиксируя узел 9, а затем 10. В результате получим t9 и t10 соответственно и переходы, на которых достигаются эти минимальные значения времени. Тем самым завершается первый этап построения оптимального пути.
Теперь полагаем, что осталось совершить 3-й и 4-й переходы. Фиксируем узел 4 и определяем минимальный путь из него к выходам. Достаточно сравнить только три: 1)время на переходе 4-8 плюс t8; 2)время на переходе 4-9 плюс t9; 3)время на переходе 4-10 плюс t10. Минимальное значение приписываем узлу 4 (t4) и выделяем жирной линией соответствующий переход на третьем шаге. Принципиальная особенность ДП: оптимальный переход на шаге 3 определялся не как самый короткий среди переходов этого шага, а как такой, который обеспечивает минимум времени от данного узла к выходу. Точно так же находим решения для узлов 5, 6 и 7. Опираясь на них, можно переходить к третьему этапу построения оптимального пути, охватывающему 2, 3 и 4-й шаги. Рассуждения аналогичны вышеприведенным. Последний, четвертый, этап охватывает все шаги. Найдя решение для 1-го шага, мы тем самым завершаем построение оптимальных путей. Двигаясь по полученному решению от входа к выходу, то есть в прямом направлении, последовательно находим переходы, составляющие оптимальный путь.
