
- •1. Основные понятия и этапы са. Основные понятия са
- •Этапы системного анализа
- •2. Операция и ее составляющие. Этапы ио.
- •3. Применение научных методов Этапы операционного проекта
- •6. Внедрение результатов исследования.
- •3. Виды математических моделей ио, примеры.
- •4. Состязательные задачи. Решение игры 2-х лиц.
- •5. Классификация и характеристики смо. Понятие системы массового обслуживания
- •Поток событий и его свойства
- •Транспортная задача
- •8. Формы представления задач лп и способы приведения к ним. Каноническая форма задач лп
- •Стандартная форма задачи лп
- •9. Основные понятия лп, свойства задач лп. Постановка задачи
- •Основные понятия лп. Свойства задач лп
- •10. Геометрия задач лп, базисные решения, вырожденность. Геометрия задач лп
- •Выделение вершин допустимого множества
- •11. Понятие базиса, переход от одного базисного решения к другому.
- •Построение начального базисного решения
- •13. Алгоритм симплекс-метода.
- •14. Двойственность в лп, построение моделей двойственных задач. Двойственность задач лп
- •Запись двойственной задачи в симметричном случае
- •Запись двойственной задачи в общем случае
- •15. Экономическая интерпретация двойственной задачи. Двойственный симплекс-метод. Интерпретация двойственной задачи
- •Двойственный симплекс-метод
- •16. Теоремы двойственности.
- •17. Учет двусторонних ограничений, модифицир. Симплекс-метод. Учет двусторонних ограничений
- •М одифицированный алгоритм
- •18. Параметрический анализ вектора ограничений.
- •19. Параметрический анализ коэффициентов линейной формы.
- •20. Модели транспортных задач и их хар-ка, условия разрешимости. Простейшая транспортная задача (т-задача)
- •Транспортная задача с ограниченными пропускными способностями (Td - задача)
- •Многоиндексные задачи
- •Транспортные задачи по критерию времени
- •21. Построение начального плана перевозок т-задачи
- •Правило северо-западного угла
- •Правило минимального элемента.
- •Метод Фогеля
- •22. Обоснование метода потенциалов. Переход от одного плана перевозок к другому
- •Признак оптимальности
- •23. Алгоритм метода потенциалов
- •24. Двойственность т-задач, эконом. Интерпретация потенциалов. Двойственная пара транспортных задач
- •Экономическая интерпретация потенциалов
- •25. Метод потенциалов для Td-задачи.
- •26. Приведение открытой модели транспортной задачи к закрытой.
- •27. Трансп. Задачи в сетевой постановке, задача о кратчайшем пути. Транспортные задачи в сетевой постановке (транспортные сети)
- •Алгоритм Дейкстры-Форда:
- •28. Задача о максимальном потоке.
- •29. Метод декомпозиции Данцига-Вулфа в общем случае.
- •30. Метод декомпозиции транспортных задач
- •31. Постановка задач стохастического программирования
- •32. Целочисленное программирование: Особенности, концепции точных и приближенных методов решений.
- •Проблема целочисленности
- •33. Методы отсечений.
- •34. Метод ветвей и границ.
- •35. Аддитивный метод.
- •36. Нелинейное программирование (нлп): постановка, классы задач нлп, условия оптимальности. Характеристика задач
- •Условия оптимальности
- •37. Квадратичное программирование.
- •38. Сепарабельное и дробно-линейное программирование. Сепарабельное программирование (сп)
- •Задачи дробно-линейного программирования
- •39. Методы покоординатного спуска и Хука-Дживса. Метод Гаусса-Зейделя (покоординатного спуска)
- •Метод Хука-Дживса (метод конфигураций)
- •40. Симплексный метод поиска.
- •41. Градиентные методы.
- •Методы сопряженных направлений
- •Методы Пауэла, Флетчера-Ривса, Девидона-Флетчера-Пауэла
- •43. Методы случайного поиска.
- •Алгоритм с возвратом при неудачном шаге
- •Алгоритм с обратным шагом
- •Алгоритм наилучшей пробы
- •Алгоритм статистического градиента
- •44. Метод проектирования градиентов.
- •45. Генетические алгоритмы
- •46. Методы штрафных и барьерных функций. Метод штрафных функций
- •Метод барьерных функций
- •47. Динамическое программирование (дп): принцип оптимальности, функциональное уравнение, процедура дп.
- •Как работает метод дп
- •Функциональное уравнение дп
- •48. Дп: задача распределения ресурсов, достоинства дп.
- •49. Дп: задача о кратчайшем пути и с мультипликативным критерием. Задача о кратчайшем пути
- •Задача с мультипликативным критерием
- •50. Дп: организация выпуска m видов продукции.
- •51. Дп: задача об инвестициях.
- •52. Дп: многомерные задачи и проблемы решения.
- •53. Дп: снижение размерности с помощью множителей Лагранжа
- •54. Задачи спу: построение сети и временной анализ.
- •Временной анализ (для детерминированной сети)
- •55. Задачи спу: оптимизация.
- •56. Многокритериальные задачи: постановка, проблемы, основные понятия, методы.
- •Методы многокритериальной оптимизации
- •57. Многокрит. Задачи: функция полезности, лексикографический метод. Функция полезности
- •Решение на основе лексикографического упорядочения критериев
- •58. Методы главного критерия, свертки, идеальной точки, целевого програм-я. Метод главного критерия
- •Линейная свертка
- •Метод идеальной точки
- •Целевое программирование (цп)
- •59. Диалоговые методы решения задач по многим критериям.
- •Метод уступок
- •Интерактивное компромиссное программирование
45. Генетические алгоритмы
По своей концепции генетические алгоритмы близки к методам случайного поиска. В них сочетаются элементы случайности и детерминированности, что характерно для всех природных процессов. Заимствованием механизмов живой природы и обусловлено название "генетические". Детерминированная составляющая алгоритмов в большей степени представлена в моделировании процессов отбора, размножения и наследования, а случайная – процесса мутации.
Любая альтернатива (вариант) представляется
в виде строки (как правило, битовой)
фиксированной длины, с которой манипулируют
вне связи с содержанием задачи. Строка
называется кодом. В коде в общем
случае представлен набор параметров,
зависящих от аргументов целевой функции.
Код и его структура определяют генотип.
Экземпляры кода - хромосомы / особи,
есть точки в пространстве поиска.
Совокупность особей образует популяцию,
а последовательные популяции – поколения.
Основными параметрами конкретного
алгоритма являются размер популяции и
вероятности применения операторов.
Первоначально по содержанию задачи
формируется генотип и создается исходная
популяция. Размер популяции N
рекомендуется брать исходя из оценки
числа возможных альтернатив r:
К текущей популяции применяется оператор
отбора, в результате чего образуется
множество родительских пар. При
максимизации целевой функции вероятность
особи стать родителем может вычисляться
по формуле
где fi
– значение критерия на i-й
особи.
Д
ля
создания потомков используется оператор
скрещивания, моделирующий процесс
наследования за счет передачи части
свойств от родителей к потомкам.
Вероятность его применения рекомендуется
брать не ниже 0,9. Он производит обмен
подстроками родительских особей, от
пары родителей образуется два потомка.
Как это происходит, зависит от выбранной
процедуры скрещивания. Например, при
длине строки n из
первых n-1
равновероятных натуральных чисел
разыгрывается одно число, которое
принимается за точку разбиения.
Затем подстроки родителей, находящиеся
справа от точки разбиения, меняются
местами. К новым особям применяется
оператор мутации. Вместе с оператором
скрещивания он позволяет расширить
область поиска, получить особи со
свойствами, отсутствующими у родителей.
Вероятность мутации берется не выше
0,01. Процесс мутации заключается в
случайной перестановке 2 элементов
строки, в смене значения случайного
элемента строки с 0 на 1 или наоборот, в
циклическом сдвиге элементов строки и
т.п. Добавление потомков приводит к
расширению популяции. В алгоритмах
стационарного состояния все поколения
имеют одинаковый размер. Поэтому на
следующем шаге алгоритма производится
сокращение популяции оператором
редукции. Вероятность его применения
к особи м определить через вероятность
отбора pi:
На последнем шаге цикла проверяется условие останова. В качестве критерия останова используют число поколений, качество поколения (пороговое значение), близость особей между собой и др.
Для повышения эффективности генетических алгоритмов предлагаются способы распараллеливания вычислений, сокращения размера популяции за счет выделения кластеров и замены каждого одной особью, разрабатываются алгоритмы с изменяемым размером популяции.
Отличительной чертой генетических алгоритмов является одновременное использование набора точек в пространстве поиска вместо перехода от точки к точке в традиционных методах. Эта особенность позволяет применять такие алгоритмы для решения многоэкстремальных задач.
Самым важным этапом применения алгоритма является определение генотипа (структуры кода) и для каждой задачи он индивидуален. Кроме того, специфика задачи может диктовать и требования к работе операторов. Например, в задаче коммивояжера оператор скрещивания не должен порождать потомков, в коде которых один пункт представлен более одного раза.