- •1. Основные понятия и этапы са. Основные понятия са
- •Этапы системного анализа
- •2. Операция и ее составляющие. Этапы ио.
- •3. Применение научных методов Этапы операционного проекта
- •6. Внедрение результатов исследования.
- •3. Виды математических моделей ио, примеры.
- •4. Состязательные задачи. Решение игры 2-х лиц.
- •5. Классификация и характеристики смо. Понятие системы массового обслуживания
- •Поток событий и его свойства
- •Транспортная задача
- •8. Формы представления задач лп и способы приведения к ним. Каноническая форма задач лп
- •Стандартная форма задачи лп
- •9. Основные понятия лп, свойства задач лп. Постановка задачи
- •Основные понятия лп. Свойства задач лп
- •10. Геометрия задач лп, базисные решения, вырожденность. Геометрия задач лп
- •Выделение вершин допустимого множества
- •11. Понятие базиса, переход от одного базисного решения к другому.
- •Построение начального базисного решения
- •13. Алгоритм симплекс-метода.
- •14. Двойственность в лп, построение моделей двойственных задач. Двойственность задач лп
- •Запись двойственной задачи в симметричном случае
- •Запись двойственной задачи в общем случае
- •15. Экономическая интерпретация двойственной задачи. Двойственный симплекс-метод. Интерпретация двойственной задачи
- •Двойственный симплекс-метод
- •16. Теоремы двойственности.
- •17. Учет двусторонних ограничений, модифицир. Симплекс-метод. Учет двусторонних ограничений
- •М одифицированный алгоритм
- •18. Параметрический анализ вектора ограничений.
- •19. Параметрический анализ коэффициентов линейной формы.
- •20. Модели транспортных задач и их хар-ка, условия разрешимости. Простейшая транспортная задача (т-задача)
- •Транспортная задача с ограниченными пропускными способностями (Td - задача)
- •Многоиндексные задачи
- •Транспортные задачи по критерию времени
- •21. Построение начального плана перевозок т-задачи
- •Правило северо-западного угла
- •Правило минимального элемента.
- •Метод Фогеля
- •22. Обоснование метода потенциалов. Переход от одного плана перевозок к другому
- •Признак оптимальности
- •23. Алгоритм метода потенциалов
- •24. Двойственность т-задач, эконом. Интерпретация потенциалов. Двойственная пара транспортных задач
- •Экономическая интерпретация потенциалов
- •25. Метод потенциалов для Td-задачи.
- •26. Приведение открытой модели транспортной задачи к закрытой.
- •27. Трансп. Задачи в сетевой постановке, задача о кратчайшем пути. Транспортные задачи в сетевой постановке (транспортные сети)
- •Алгоритм Дейкстры-Форда:
- •28. Задача о максимальном потоке.
- •29. Метод декомпозиции Данцига-Вулфа в общем случае.
- •30. Метод декомпозиции транспортных задач
- •31. Постановка задач стохастического программирования
- •32. Целочисленное программирование: Особенности, концепции точных и приближенных методов решений.
- •Проблема целочисленности
- •33. Методы отсечений.
- •34. Метод ветвей и границ.
- •35. Аддитивный метод.
- •36. Нелинейное программирование (нлп): постановка, классы задач нлп, условия оптимальности. Характеристика задач
- •Условия оптимальности
- •37. Квадратичное программирование.
- •38. Сепарабельное и дробно-линейное программирование. Сепарабельное программирование (сп)
- •Задачи дробно-линейного программирования
- •39. Методы покоординатного спуска и Хука-Дживса. Метод Гаусса-Зейделя (покоординатного спуска)
- •Метод Хука-Дживса (метод конфигураций)
- •40. Симплексный метод поиска.
- •41. Градиентные методы.
- •Методы сопряженных направлений
- •Методы Пауэла, Флетчера-Ривса, Девидона-Флетчера-Пауэла
- •43. Методы случайного поиска.
- •Алгоритм с возвратом при неудачном шаге
- •Алгоритм с обратным шагом
- •Алгоритм наилучшей пробы
- •Алгоритм статистического градиента
- •44. Метод проектирования градиентов.
- •45. Генетические алгоритмы
- •46. Методы штрафных и барьерных функций. Метод штрафных функций
- •Метод барьерных функций
- •47. Динамическое программирование (дп): принцип оптимальности, функциональное уравнение, процедура дп.
- •Как работает метод дп
- •Функциональное уравнение дп
- •48. Дп: задача распределения ресурсов, достоинства дп.
- •49. Дп: задача о кратчайшем пути и с мультипликативным критерием. Задача о кратчайшем пути
- •Задача с мультипликативным критерием
- •50. Дп: организация выпуска m видов продукции.
- •51. Дп: задача об инвестициях.
- •52. Дп: многомерные задачи и проблемы решения.
- •53. Дп: снижение размерности с помощью множителей Лагранжа
- •54. Задачи спу: построение сети и временной анализ.
- •Временной анализ (для детерминированной сети)
- •55. Задачи спу: оптимизация.
- •56. Многокритериальные задачи: постановка, проблемы, основные понятия, методы.
- •Методы многокритериальной оптимизации
- •57. Многокрит. Задачи: функция полезности, лексикографический метод. Функция полезности
- •Решение на основе лексикографического упорядочения критериев
- •58. Методы главного критерия, свертки, идеальной точки, целевого програм-я. Метод главного критерия
- •Линейная свертка
- •Метод идеальной точки
- •Целевое программирование (цп)
- •59. Диалоговые методы решения задач по многим критериям.
- •Метод уступок
- •Интерактивное компромиссное программирование
Метод Фогеля
На каждом шаге метода Фогеля
для каждой i-й строки
вычисляются штрафы
как разность между двумя наименьшими
тарифами строки. Таким же образом
вычисляются штрафы
для каждого j-го столбца.
После чего выбирается максимальный
штраф из всех штрафов строк и
столбцов. В строке или столбце,
соответствующем выбранному штрафу, для
заполнения выбирается не вычеркнутая
клетка с минимальным тарифом
.
Если существует несколько одинаковых
по величине максимальных штрафов в
матрице, то в соответствующих строках
или столбцах выбирается одна не
вычеркнутая клетка с минимальным тарифом
.Если
клеток с минимальным тарифом также
несколько, то из них выбирается клетка
(i,j) с
максимальным суммарным штрафом, т.е.
суммой штрафов по i-й
строке и j-му столбцу.
22. Обоснование метода потенциалов. Переход от одного плана перевозок к другому
Н
овый
план можно получить из исходного заменой
одной базисной переменной. Клетки с
базисными переменными - базисные,
остальные – небазисные/свободные. Для
перехода к новому плану используется
замкнутая цепь, которая строится в
матрице перевозок по следующим правилам.
Построение начинается со свободной
клетки, которую соединяют с базисной в
строке (столбце). Последнюю соединяют
с базисной в столбце (строке). Далее,
чередуя движение по строкам и столбцам,
продолжаем соединение занятых клеток
так, чтобы вернуться в начальную. При
этом не требуется, чтобы цепь включала
все базисные клетки. Угловые клетки
цепи - вершины цепи. Начальная вершина
должна быть в свободной клетке, остальные
– в базисных. Такая цепь - цикл пересчета;
геометрическое представление разложения
небазисного вектора условий при
переменной в свободной клетке по векторам
текущего базиса. Если базисная клетка
не попала в цикл пересчета, то
соответствующий базисный вектор имеет
в этом разложении нулевой коэффициент.
Так как любой небазисный вектор выражается
через базис единственным образом, то
для любой небазисной (свободной) клетки
можно построить один и только один цикл
пересчета. Примеры на рис. Кружком
выделена начальная (небазисная) клетка
цикла. Нумеровать вершины можно в любом
направлении. И начинать можно с любой
вершины. На рисунке нумерация проведена
с клетки, смежной начальной. В этом
случае начальная клетка всегда будет
четной.
В каждой строке и каждом столбце, по которым проходит цикл пересчета, будет две и только две вершины: одна четная и одна нечетная. В результате цикл пересчета, построенный в допустимой матрице перевозок, обладает замечательным свойством: если перемещать по нему некоторое количество груза >0, прибавляя его к Xij в четных вершинах и вычитая из Xij в нечетных, то условия задачи ПО и ПН не нарушатся. Чтобы новое решение было допустимым, то есть выполнялось и условие неотриц-ти переменных, необходимо ограничить значение : 0=min Xij, ij нечет.
Здесь нечет – множество индексов переменных в нечетных вершинах цикла.
Для получения базисного решения (нового опорного плана) достаточно взять =0. Переменная свободной клетки, на кот. строился цикл, -> базисной со значением 0, а переменная, доставляющая минимум, обнуляется и переходит в небазисные.
