
- •1. Основные понятия и этапы са. Основные понятия са
- •Этапы системного анализа
- •2. Операция и ее составляющие. Этапы ио.
- •3. Применение научных методов Этапы операционного проекта
- •6. Внедрение результатов исследования.
- •3. Виды математических моделей ио, примеры.
- •4. Состязательные задачи. Решение игры 2-х лиц.
- •5. Классификация и характеристики смо. Понятие системы массового обслуживания
- •Поток событий и его свойства
- •Транспортная задача
- •8. Формы представления задач лп и способы приведения к ним. Каноническая форма задач лп
- •Стандартная форма задачи лп
- •9. Основные понятия лп, свойства задач лп. Постановка задачи
- •Основные понятия лп. Свойства задач лп
- •10. Геометрия задач лп, базисные решения, вырожденность. Геометрия задач лп
- •Выделение вершин допустимого множества
- •11. Понятие базиса, переход от одного базисного решения к другому.
- •Построение начального базисного решения
- •13. Алгоритм симплекс-метода.
- •14. Двойственность в лп, построение моделей двойственных задач. Двойственность задач лп
- •Запись двойственной задачи в симметричном случае
- •Запись двойственной задачи в общем случае
- •15. Экономическая интерпретация двойственной задачи. Двойственный симплекс-метод. Интерпретация двойственной задачи
- •Двойственный симплекс-метод
- •16. Теоремы двойственности.
- •17. Учет двусторонних ограничений, модифицир. Симплекс-метод. Учет двусторонних ограничений
- •М одифицированный алгоритм
- •18. Параметрический анализ вектора ограничений.
- •19. Параметрический анализ коэффициентов линейной формы.
- •20. Модели транспортных задач и их хар-ка, условия разрешимости. Простейшая транспортная задача (т-задача)
- •Транспортная задача с ограниченными пропускными способностями (Td - задача)
- •Многоиндексные задачи
- •Транспортные задачи по критерию времени
- •21. Построение начального плана перевозок т-задачи
- •Правило северо-западного угла
- •Правило минимального элемента.
- •Метод Фогеля
- •22. Обоснование метода потенциалов. Переход от одного плана перевозок к другому
- •Признак оптимальности
- •23. Алгоритм метода потенциалов
- •24. Двойственность т-задач, эконом. Интерпретация потенциалов. Двойственная пара транспортных задач
- •Экономическая интерпретация потенциалов
- •25. Метод потенциалов для Td-задачи.
- •26. Приведение открытой модели транспортной задачи к закрытой.
- •27. Трансп. Задачи в сетевой постановке, задача о кратчайшем пути. Транспортные задачи в сетевой постановке (транспортные сети)
- •Алгоритм Дейкстры-Форда:
- •28. Задача о максимальном потоке.
- •29. Метод декомпозиции Данцига-Вулфа в общем случае.
- •30. Метод декомпозиции транспортных задач
- •31. Постановка задач стохастического программирования
- •32. Целочисленное программирование: Особенности, концепции точных и приближенных методов решений.
- •Проблема целочисленности
- •33. Методы отсечений.
- •34. Метод ветвей и границ.
- •35. Аддитивный метод.
- •36. Нелинейное программирование (нлп): постановка, классы задач нлп, условия оптимальности. Характеристика задач
- •Условия оптимальности
- •37. Квадратичное программирование.
- •38. Сепарабельное и дробно-линейное программирование. Сепарабельное программирование (сп)
- •Задачи дробно-линейного программирования
- •39. Методы покоординатного спуска и Хука-Дживса. Метод Гаусса-Зейделя (покоординатного спуска)
- •Метод Хука-Дживса (метод конфигураций)
- •40. Симплексный метод поиска.
- •41. Градиентные методы.
- •Методы сопряженных направлений
- •Методы Пауэла, Флетчера-Ривса, Девидона-Флетчера-Пауэла
- •43. Методы случайного поиска.
- •Алгоритм с возвратом при неудачном шаге
- •Алгоритм с обратным шагом
- •Алгоритм наилучшей пробы
- •Алгоритм статистического градиента
- •44. Метод проектирования градиентов.
- •45. Генетические алгоритмы
- •46. Методы штрафных и барьерных функций. Метод штрафных функций
- •Метод барьерных функций
- •47. Динамическое программирование (дп): принцип оптимальности, функциональное уравнение, процедура дп.
- •Как работает метод дп
- •Функциональное уравнение дп
- •48. Дп: задача распределения ресурсов, достоинства дп.
- •49. Дп: задача о кратчайшем пути и с мультипликативным критерием. Задача о кратчайшем пути
- •Задача с мультипликативным критерием
- •50. Дп: организация выпуска m видов продукции.
- •51. Дп: задача об инвестициях.
- •52. Дп: многомерные задачи и проблемы решения.
- •53. Дп: снижение размерности с помощью множителей Лагранжа
- •54. Задачи спу: построение сети и временной анализ.
- •Временной анализ (для детерминированной сети)
- •55. Задачи спу: оптимизация.
- •56. Многокритериальные задачи: постановка, проблемы, основные понятия, методы.
- •Методы многокритериальной оптимизации
- •57. Многокрит. Задачи: функция полезности, лексикографический метод. Функция полезности
- •Решение на основе лексикографического упорядочения критериев
- •58. Методы главного критерия, свертки, идеальной точки, целевого програм-я. Метод главного критерия
- •Линейная свертка
- •Метод идеальной точки
- •Целевое программирование (цп)
- •59. Диалоговые методы решения задач по многим критериям.
- •Метод уступок
- •Интерактивное компромиссное программирование
Правило северо-западного угла
|
b1 |
b2 |
… |
bn |
|
C11 X11 |
C12 X12 |
… |
C1n X1n |
|
C21 X21 |
C22 X22 |
… |
C2n X2n |
… |
… |
… |
… |
… |
|
Cm1 Xm1 |
Cm2 Xm2 |
… |
Cmn Xmn |

П
роцесс
построения начального плана м представить
в виде след. дерева решений.
Общее правило определения значения очередной базисной переменной: Xij=min(ост от ai, ост от bj). На каждом шаге закрывается или строка, или столбец, а на последнем шаге при назначении Xmn закрываются одновременно m-я строка и n-й столбец (так как задача сбалансированная). Таким образом, число базисных переменных равно m+ n-1. Построение начального плана завершено.
ПО |
Потребитель (ПН) |
Запасы груза |
|||
B1 |
B2 |
B3 |
B4 |
||
A1 |
6 75
|
7 25
|
3 |
5 |
100 |
A2 |
1 |
2 55 |
5 60 |
6 35 |
150 |
A3 |
3 |
10 |
20 |
1 50 |
50 |
Потр-ть |
75 |
80 |
60 |
85 |
300 |
Правило минимального элемента.
В приведенном способе построения плана не участвовали затраты на перевозку. Учет затрат позволит получить начальный план, более близкий к оптимальному. Первой заполняется клетка с минимальными затратами. Пусть minCij=Ckp. Тогда Xkp=min(ak, bp). Если при этом закрывается строка
ПО |
Потребитель(ПН) |
Запасы груза |
|||
B1 |
B2 |
B3 |
B4 |
||
A1 |
6
|
7 5 |
3 60 |
5 35 |
100 |
A2 |
1 75 |
2 75
|
5
|
6
|
150 |
A3 |
3 |
10 |
20 |
1 50 |
50 |
Потр-ть |
75 |
80 |
60 |
85 |
300 |
Пример: Построим начальный план по правилу минимального элемента для задачи из примера 1. Результат в табл.
При таком начальном плане L=665, что меньше чем в примере 1. Однако нельзя утверждать, что для любых данных этот способ дает лучший план. Правило минимального элемента эффективнее в среднем (на множестве задач). В то же время алгоритм реализации этого правила сложнее, чем правила северо-западного угла.
Применяется также вариант, в котором на каждом шаге ищется клетка с минимальными затратами среди всех открытых клеток. Такой способ еще сложнее, но в среднем дает планы, более близкие к оптимальным.