Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы по СА и ИО1.doc
Скачиваний:
14
Добавлен:
01.03.2025
Размер:
6.8 Mб
Скачать

19. Параметрический анализ коэффициентов линейной формы.

Рассмотрим 3 варианта параметрирования, отличающ. своими возможностями.

1. Коэффициенты критерия изменяются линейно от параметра:

C()=C+V, а вектор V задается аналогично случаю изменения ресурсов.

Задача параметрирования: (С+V)TXmax AX  B X  0.

ДЗ: BTUmin ATU  C+V U  0

О на представляет собой задачу параметрирования вектора ограничений, решение которой может быть получено с помощью параметрического анализа вектора ограничений. В результате найдем диапазон изменения параметра (0  < ), в котором базис двойственной задачи остается неизменным. В строке Z оптимальной таблицы двойственной задачи находятся переменные прямой задачи. Но значения zj зависят только от базиса, поэтому в найденном диапазоне оптимальное решение также не меняется. Изменяться будет только критерий. При достижении критического значения произойдет смена базиса (оптимальной вершины), а значит, и оптимального решения прямой задачи. Проследить дальнейшее изменение решения можно после повторного решения двойственной задачи с вектором

Такое поведение следует и из геометрических представлений. Изменение коэффициентов линейной формы изменяет наклон линии уровня критерия, но не влияет на допустимое множество. При наличии критических значений изменение коэффициентов приводит к скачкооб­разному изменению оптимального решения – переходу из вершины в вершину (смежную).

2. Для небазисных переменных можно определить диапазон изменения Cj, в котором оптимальное решение остается неизменным. Пока при изменения Cj все Δj 0 оптимальное решение исходной задачи сохраняет свой статус. Так как Δj = Zj-Cj,

то уменьшение Cj не может изменить знак оценки. Поэтому интерес представляет увеличение Cj. Пусть + j, j .0. Тогда Δj = ZjCj - j = Δj - j  0.

Отсюда следует, что при j Δj исходное решение остается оптимальным.

3. Этот вариант основан на формуле вычисления относительных оценок в модифицированном симплекс-методе: .

Она позволяет исследовать влияние изменения любых коэффициентов Сj. В общем случае эти коэффициенты являются некоторыми функциями параметра : Cj(). Тогда условия оптимальности запишутся в виде

Здесь обратная матрица соответствует оптимальному базису. Пока при изменении коэффициентов (т.е. ) эти неравенства выполняются, оптимальное решение не изменяется. Значение , при котором хотя бы одно из условий становится равенством, и будет критическим. Практически оно находится так: каждое условие записывается как равенство и определяются его корни; из всех корней выбирается наименьшее положительное. Это и будет

Данный вариант параметрирования пригоден как для линейных, так и нелинейных зависимостей от параметра. Однако в последнем случае его применение ограничено возможностью нахождения корней нелинейного уравнения.

20. Модели транспортных задач и их хар-ка, условия разрешимости. Простейшая транспортная задача (т-задача)

О сновополагающая для всех транспортных задач. Исходные данные: m – число пунктов отправления (ПО); n – число пунктов назначения (ПН); Cij – затраты на перевозку единицы груза из пункта i в пункт j, ij; ai – количество груза в пункте i, i (возможности ПО); bj – потребность в грузе в пункте j, j.

Критерий - суммарные затраты на перевозку. Модель записывается в виде:

Однако такая запись модели корректна только если Задача, в которой - сбалансированная. Любая несбалансированная задача легко приводится к сбалансированной. Поэтому здесь рассмотрим только сбалансированную задачу:

Xij  0.

Х – матрица перевозок; С – матрица транспортных затрат;

a=(a1, a2, .. , am) – вектор возм-тей ПО;

b=(b1, b2, . . . , bn) – вектор потр-й ПН.

Особенности задачи:

  • Модель содержит две группы условий, размерность которых равна соответствующему числу ПО и ПН; число переменных равно произведению mn;

  • Все коэффициенты при переменных в условиях равны единице;

  • Каждая переменная входит в условия ровно 2 раза, по 1 в кажд. группу условий;

  • Задача имеет простые условия разрешимости, кот. определяются след. теоремой:

Д ля разрешимости Т-задачи необходимо и достаточно, чтобы она была сбалансированной. Теорема справедлива при конечных значениях Сij.

Доказательство. Необходимость доказывается исходя из того, что задача разрешима. В этом случае все условия задачи выполняются. Просуммируем условия ПО по i, а условия ПН по j:

Так как левые части равенств =, то = и правые. Т.о, в разрешимой задаче всегда имеет место формальный баланс возможностей и потребностей.

Д остаточность. Задача ЛП всегда разрешима, если допустимое множество – выпуклый многогранник, то есть непустое и ограниченное. Ограниченность переменных снизу задана явно, а ограничение сверху следует из конечности всех ai и bj, больше которых переменные быть не могут -> множество ограничено. Докажем, что оно непустое. Для этого достаточно найти хотя бы одно доп. решение. Одно из таких решений можно построить, если задача сбалансирована: -->

О но неотрицательно. Остается проверить выполнение основных условий задачи.

 решение удовлетворяет условиям ПО;

решение удовлетворяет условиям ПН ←

Т.о, доп. множество сбаланс. задачи непустое и ограниченное-> задача разрешима.

Условия ПО и ПН – линейно зависимы из-за сбалансированности задачи. Ранг системы равен m+n-1. Такую размерность имеют базис и базисное решение Т-задачи.