
- •1. Понятие об информации. Информация; количество информации; бит, байт, кратные единицы.
- •2. Двоичная, восьмеричная, шестнадцатеричная системы счисления; перевод из одной системы счисления в другую.
- •3. Способы хранения числовой информации в двоичной памяти эвм.
- •4. Способы хранения и представления графической информации в эвм.
- •5. Способы хранения и вывода аудио информации в эвм.
- •6. Способы хранения и представления текстовой информации с помощью эвм.
- •7. Области применения эвм различных типов. Классификация типов эвм по быстродействию и объёму памяти.
- •8. Организация вычислительного процесса на эвм; назначение операционной системы, принципы построения и функционирования ос.
- •9. Операционные системы; назначение, выполняемые функции; типы операционных систем.
- •10. Структура эвм с центральным процессором и магистральная схема эвм (на общей шине).
- •11. Назначение и состав центрального процессора эвм.
- •12. Типы и назначение периферийного оборудования эвм. Долговременные запоминающие устройства.
- •13. Устройства ввода информации в память эвм. Типы устройств и принцип их действия.
- •14. Устройства вывода информации. Типы устройств и принцип их действия.
- •15. Координатные устройства. Их назначение, типы и принцип действия.
- •16. Обработка программ под управлением операционной системы. Типы операционных систем.
- •17. Структура и основные компоненты операционной системы. Командный процессор. Драйверы внешних устройств. Файловая система.
- •18. Файловая система хранения данных, каталоги и файлы, организация доступа к файлам.
- •19. Этапы разработки программ для эвм. Данные и алгоритмы, как модельное отражение реальных объектов. Языки программирования.
- •20. Базовые и структурные типы данных, используемые для описания свойств объектов.
- •21. Понятие алгоритма. Способы описания алгоритмов: словесный, схемный, с помощью языка программирования. Правила оформления схем алгоритмов в соответствии с гост.
- •22. Графическое представление основных алгоритмических структур с помощью схем: следование, ветвление, циклы.
- •23. Алгоритмические языки. Простые и составные типы операторов (на примере языка Паскаль).
- •24. Этапы создания программ для эвм. Трансляция с языка программирования.
- •25. Принципы передачи данных по каналам связи. Среда передачи данных: коаксиальный кабель, оптоволокно, спутниковые каналы; мультиплексирование.
- •26. Организация передачи данных по телефонным каналам. Способы модуляции. Модем.
- •27. Локальные компьютерные сети. Способы объединения компьютеров в сеть. Распределённые компьютерные сети.
- •7 Протоколов передачи данных:
- •28. Интернет, принципы организации сети; основные возможности, предоставляемые пользователям глобальных компьютерных сетей.
- •29. Базы данных. Использование эвм для хранения неструктурированной (текстовой) информации. Информационно-поисковые системы.
- •30. Назначение информационно-поисковых систем; поисковые языки.
- •31. Базы данных. Фактографические автоматизированные информационные системы. Основные понятия о системах управления базами данных (субд). Реляционные базы данных.
- •32. Угрозы безопасности информации: технические, природные, созданные людьми.
- •33. Меры обеспечения безопасности информации: идентификация, разделение полномочий, шифрование, регистрация.
- •34. Технические средства защиты информации; электронные ключи, принцип использования, предоставляемы возможности.
- •35. Компьютерные вирусы; типы компьютерных вирусов, способы защиты от компьютерных вирусов.
1. Понятие об информации. Информация; количество информации; бит, байт, кратные единицы.
Информация - совокупность сведений, расширяющая представление об объектах и явлениях окружающей среды, их свойствах, состоянии и взаимосвязях. Обмен информацией непрерывно происходит между людьми, между людьми и окружающим миром. Обмен информацией осуществляется посредством сообщений в числовой, текстовой, графической, кодовой, акустической и видео форме.
Информации обладает следующими свойствами:
запоминаемость, то есть способность воспринять информацию и хранить ее продолжительное время;
передаваемость, то есть способность информации к копированию – восприятием ее другой системой без искажения;
воспроизводимость характеризует неиссякаемость и неистощимость информации, то есть при копировании информация остается тождественной себе; свойство воспроизводимости не является базовым и тесно связано с передаваемостью;
преобразуемость – это способность информации менять способ и форму своего существования.
Количество информации – это количество информации в одном случайном объекте относительно другого.
Количество информации вычисляется по формуле, предложенной Р. Хартли:
I=log2N
N – число равновероятных событий;
I – количество информации.
В информатике в основном используется двоичная система счисления, то есть все числа представляются двумя цифрами: 0 и 1. Поэтому минимальной единицей измерения данных является бит. Таким образом, 1 бит – это либо 0, либо 1. Элемент, принимающий всего два значения, называется двухпозиционным и просто реализуется аппаратно. Наряду с битом используется укрупненная единица измерения – байт, равная 8 бит.
Для удобства использования введены и более крупные единицы объема данных:
1024 байт = 1 килобайт (Кбайт);
1024 Кбайт = 1 мегабайт (Мбайт) = 10242 байт = 1048576 байт;
1024 Мбайт = 1 гигабайт (Гбайт) = 10243 байт;
1024 Гбайт = 1 терабайт (Тбайт) = 10244 байт;
1024 Тбайт = 1 пентабайт (Пбайт) = 10245 байт.
2. Двоичная, восьмеричная, шестнадцатеричная системы счисления; перевод из одной системы счисления в другую.
Система счисления – совокупность приемов и правил представления чисел в виде конечного числа символов. Система счисления имеет свой алфавит – упорядоченный набор символов (цифр) и совокупность операций образования чисел из этих символов.
В информатике и вычислительной технике широко используются следующие системы счисления:
- двоичная n = 2; используемый алфавит: A = {0, 1}; например, 01110001;
- восьмеричная n = 8; используемый алфавит: A = {0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17};
- шестнадцатеричная n = 16; используемый алфавит: A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}; цифры A, B, C, D, E, F имеют десятичные количественные эквиваленты 10, 11, 12, 13, 14, 15 соответственно; например, AB034D16.
Представление цифр в двоичной, восьмеричной и шестнадцатеричной системах счисления представлено в таблице.
Восьмеричная |
Двоичная |
Шестнадцатеричная |
0 |
0000 |
0 |
1 |
0001 |
1 |
2 |
0010 |
2 |
3 |
0011 |
3 |
4 |
0100 |
4 |
5 |
0101 |
5 |
6 |
0110 |
6 |
7 |
0111 |
7 |
10 |
1000 |
8 |
11 |
1001 |
9 |
12 |
1010 |
A |
13 |
1011 |
B |
14 |
1100 |
C |
15 |
1101 |
D |
16 |
1110 |
E |
17 |
1111 |
F |
Правила перевода числа в другую систему счисления различаются для целых и дробных чисел.
Перевод целого числа X осуществляется по следующему алгоритму:
1) получить цифру числа n-ой системы счисления как остаток от деления числа X на основание новой системы счисления n; полученную цифру приписать слева от имеющихся цифр;
2) принять за X частное от деления числа X на основание системы счисления n;
3) выполнять шаги 1-2, пока X 0.
Пример. Перевести число 25 в двоичную систему счисления.
Решение. Удобно представить перевод числа в виде столбца, каждая строка которого содержит частное и остаток от деления числа X на основание двоичной системы счисления n = 2.
В результате получим число 110012 – результат перевода числа 25 в двоичную систему счисления. □
Перевод из шестнадцатеричной в двоичную систему счисления - каждая цифра шестнадцатеричного числа заменяется тетрадой (четырьмя битами), являющейся представлением этой цифры в двоичной системе счисления.