
- •1.) Основные физические величины и соотношения кинематики. Нормальное и тангенциальное ускорения при вращательном движении.
- •Основные кинематические понятия
- •Основные кинематические величины
- •2.) Динамика материальной точки. Законы Ньютона. Силы в механике. Момент силы.
- •Момент силы
- •3.) Импульс. Момент импульса. Их основные свойства и характеристики.
- •4.) Энергия и работа. Консервативные силы. Работа в потенциальном поле. Законы сохранения.
- •Работа, мощность, энергия
- •Потенциальное поле сил
- •5.)Динамика вращательного движения твердого тела. Момент инерции. Теорема Штейнера.
- •Момент инерции
- •6.) Кинетическая энергия вращения. Закон сохранения момент импульса.
- •7.) Законы сохранения и их обусловленность симметрией пространства и времени.
- •Законы Кеплера. Закон всемирного тяготения
- •9.) Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца.. Следствия из преобразований Лоренца.
- •10.) Основные положения общей теории относительности а. Эйнштейна.. Альтернативные теории гравитации.
- •11.) Идеальный газ. Давление и температура. Основное уравнение молекулярно-кинетической теории.
- •13.) Распределение газовых молекул по скоростям (распределение Максвелла). Барометрическая формула. (распределение Больцмана). Изменение распределений при изменениях температуры.
- •14.) Теплота и работа. Теплоемкость. Первое начало термодинамики.
- •15.) Теплоемкость идеального газа. Уравнение Майера.
- •16.) Изопроцессы. Политропический процесс. Газ Ван-дер-Ваальса.
- •17.) Теплоемкость газов. Равномерное распределение энергии по степеням свободы молекул. Массовая, объёмная и мольная удельные теплоёмкости
- •2.2.Средняя и истинная теплоёмкости
- •2.3.Теплоёмкости при постоянном объёме и давлении
- •2.5.Теплоёмкость смеси рабочих тел (газовой смеси)
- •18.) Тепловые и холодильные машины, их к.П.Д. Цикл Карно.
- •19.) Энтропия. Второе и третье начала термодинамики. Статистический смысл энтропии.
- •20.) Явления на границе раздела газа, жидкости и твердого тела. Фазовые переходы первого и второго рода. Капиллярные явления.
- •21)Электрический заряд. Закон Кулона. Напряженность электростатического поля. Принцип суперпозиции.
- •22)Потенциал и работа электростатического поля. Циркуляция вектора напряженности. Связь напряженности с потенциалом.
- •23)Диэлектрики в электростатическом поле. Поляризованность. Свободные и связанные заряды. Вектор d и его связь с векторами е и р.
- •24)Проводники в электростатическом поле. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.
- •25)Носители электрического тока в средах. Сила и плотность тока. Уравнение непрерывности.
- •26)Магнитное поле. Закон Био-Савара-Лапласа. Энергия магнитного поля. Плотность энергии магнитного поля.
- •27)Намагниченность вещества. Вектор напряженности магнитного поля и его связь с векторами индукции и намагниченности. Магнитные свойства веществ.
- •28)Закон Ампера. Магнитный момент контура с током. Контур с током в магнитном поле. Поток вектора магнитной индукции.
- •29)Сила Лоренца. Движение заряженной частицы в электрических и магнитных полях. Ускорение заряженных частиц. Эффект Холла.
- •30)Явление электромагнитной индукции. Правило Ленца. Циркуляция вектора напряженности вихревого электрического поля. Токи Фуко.
- •41.Тепловое излучение. Закон Кирхгофа. Закон Стефана-Больцмана. Закон смещения Вина. Формула Планка.
- •42. Фотоэффект и его виды. Уравнение Эйнштейна для внешнего фотоэффекта.
- •43.Волновые свойства микрочастиц. Гипотеза де Бройля и ее подтверждения. Соотношение неопределенностей Гейзенберга.
- •44.Физический смысл волн де Бройля. Понятие о волновой функции. Уравнение Шредингера.
- •45.Прохождение микрочастиц через потенциальный барьер. Туннельный эффект.
- •46.Ядерная модель атома. Оптические спектры атомов, их закономерности. Теория Бора.
- •47.Квантово-механичекая модель строения атома. Квантовые числа и их смысл. Принцип Паули.
- •48.Строение атомного ядра. Ядерные силы. Энергия связи нуклонов в ядре. Ядерная и термоядерная энергетика.
- •49.Радиоактивность. Закон радиоактивного распада. Виды радиоактивных излучений.
- •50.Элементарные частицы. Их основные характеристики. Виды взаимодействий. Классификация и свойства частиц. Теория кварков и идеи объединения фундаментальных взаимодействий.
7.) Законы сохранения и их обусловленность симметрией пространства и времени.
В основе закона сохранения энергии лежит однородность времени, т. е. равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени). Равнозначность следует понимать в том смысле, что замена момента времени t1 на момент времени t2, без изменения значений координат и скорости частиц, не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты и скорости частиц имеют в любой момент времени t2 + t такие же значения, какие имели до замены, в момент времени t1 + t.
В основе закона сохранения импульса лежит однородность пространства, т. е. одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат). Одинаковость следует понимать в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения и скоростей частиц, не изменяет механические свойства системы.
В основе закона сохранения момента импульса лежит изотропия пространства, т. е. одинаковость свойств пространства по всем направлениям (симметрия по отношению к повороту осей координат). Одинаковость следует понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах. 8.) Теория тяготения Ньютона. Законы Кеплера.
Законы Кеплера. Закон всемирного тяготения
К
началу XVII века большинство ученых было
уверено в справедливости гелиоцентрической
системы мира. И. Кеплер (1571-1630), обработав
и уточнив результаты многочисленных
наблюдений датского астронома Т. Браге
(1546-1601), изложил законы
движения планет:
1. Каждая планета движется по
эллипсу, в одном из фокусов которого
находится Солнце.
2. Радиус-вектор
планеты за равные промежутки времени
описывает одинаковые площади.
3.
Квадраты периодов обращения планет
вокруг Солнца относятся как кубы боль¬ших
полуосей их орбит.
Вскоре И.
Ньютон, при исследовании движения
небесных тел, используя законы Кеплера
и основные законы динамики открыл
всеобщий закон всемирного
тяготения:
между любыми двумя материальными точками
действует сила взаимного притяжения,
прямо пропорциональная произведению
масс этих точек (m1
и m2)
и обратно пропорциональная квадрату
расстояния между ними (r2):
(1)
Эта сила называется гравитационной
(или силой
всемирного тяготения).
Силы тяготения всегда являются силами
притяжения и направлены вдоль прямой,
проходящей через взаимодействующие
тела. Коэффициент пропорциональности
G называется гравитационной постоянной.
Закон всемирного тяготения
установлен для тел, которые мы принимаем
за материальные точки, т. е. для такие
тела, у которых размеры малы по сравнению
с расстоянием между ними. В случае, если
размеры взаимодействующих тел сравнимы
с расстоянием между ними, то эти тела
следует разбить на малые элементы,
используя формулу (1) найти силы притяжения
между всеми попарно взятыми элементами
и после этого геометрически их сложить
(проинтегрировать), что есть достаточно
сложная математическая задача.
Значение
G, которая дается в таблицах фундаментальных
физических постоянных, принимается
равным 6,6720•10-11
Н•м/кг2, т. е. два точечных тела массой
по 1 кг каждое, находящиеся на расстоянии
1 м друг от друга, притягиваются с силой
6,6720•10-11
H. Очень малая величина G показывает, что
сила гравитационного взаимодействия
может иметь существенное значение
только в случае больших масс.