
- •1.) Основные физические величины и соотношения кинематики. Нормальное и тангенциальное ускорения при вращательном движении.
- •Основные кинематические понятия
- •Основные кинематические величины
- •2.) Динамика материальной точки. Законы Ньютона. Силы в механике. Момент силы.
- •Момент силы
- •3.) Импульс. Момент импульса. Их основные свойства и характеристики.
- •4.) Энергия и работа. Консервативные силы. Работа в потенциальном поле. Законы сохранения.
- •Работа, мощность, энергия
- •Потенциальное поле сил
- •5.)Динамика вращательного движения твердого тела. Момент инерции. Теорема Штейнера.
- •Момент инерции
- •6.) Кинетическая энергия вращения. Закон сохранения момент импульса.
- •7.) Законы сохранения и их обусловленность симметрией пространства и времени.
- •Законы Кеплера. Закон всемирного тяготения
- •9.) Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца.. Следствия из преобразований Лоренца.
- •10.) Основные положения общей теории относительности а. Эйнштейна.. Альтернативные теории гравитации.
- •11.) Идеальный газ. Давление и температура. Основное уравнение молекулярно-кинетической теории.
- •13.) Распределение газовых молекул по скоростям (распределение Максвелла). Барометрическая формула. (распределение Больцмана). Изменение распределений при изменениях температуры.
- •14.) Теплота и работа. Теплоемкость. Первое начало термодинамики.
- •15.) Теплоемкость идеального газа. Уравнение Майера.
- •16.) Изопроцессы. Политропический процесс. Газ Ван-дер-Ваальса.
- •17.) Теплоемкость газов. Равномерное распределение энергии по степеням свободы молекул. Массовая, объёмная и мольная удельные теплоёмкости
- •2.2.Средняя и истинная теплоёмкости
- •2.3.Теплоёмкости при постоянном объёме и давлении
- •2.5.Теплоёмкость смеси рабочих тел (газовой смеси)
- •18.) Тепловые и холодильные машины, их к.П.Д. Цикл Карно.
- •19.) Энтропия. Второе и третье начала термодинамики. Статистический смысл энтропии.
- •20.) Явления на границе раздела газа, жидкости и твердого тела. Фазовые переходы первого и второго рода. Капиллярные явления.
- •21)Электрический заряд. Закон Кулона. Напряженность электростатического поля. Принцип суперпозиции.
- •22)Потенциал и работа электростатического поля. Циркуляция вектора напряженности. Связь напряженности с потенциалом.
- •23)Диэлектрики в электростатическом поле. Поляризованность. Свободные и связанные заряды. Вектор d и его связь с векторами е и р.
- •24)Проводники в электростатическом поле. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.
- •25)Носители электрического тока в средах. Сила и плотность тока. Уравнение непрерывности.
- •26)Магнитное поле. Закон Био-Савара-Лапласа. Энергия магнитного поля. Плотность энергии магнитного поля.
- •27)Намагниченность вещества. Вектор напряженности магнитного поля и его связь с векторами индукции и намагниченности. Магнитные свойства веществ.
- •28)Закон Ампера. Магнитный момент контура с током. Контур с током в магнитном поле. Поток вектора магнитной индукции.
- •29)Сила Лоренца. Движение заряженной частицы в электрических и магнитных полях. Ускорение заряженных частиц. Эффект Холла.
- •30)Явление электромагнитной индукции. Правило Ленца. Циркуляция вектора напряженности вихревого электрического поля. Токи Фуко.
- •41.Тепловое излучение. Закон Кирхгофа. Закон Стефана-Больцмана. Закон смещения Вина. Формула Планка.
- •42. Фотоэффект и его виды. Уравнение Эйнштейна для внешнего фотоэффекта.
- •43.Волновые свойства микрочастиц. Гипотеза де Бройля и ее подтверждения. Соотношение неопределенностей Гейзенберга.
- •44.Физический смысл волн де Бройля. Понятие о волновой функции. Уравнение Шредингера.
- •45.Прохождение микрочастиц через потенциальный барьер. Туннельный эффект.
- •46.Ядерная модель атома. Оптические спектры атомов, их закономерности. Теория Бора.
- •47.Квантово-механичекая модель строения атома. Квантовые числа и их смысл. Принцип Паули.
- •48.Строение атомного ядра. Ядерные силы. Энергия связи нуклонов в ядре. Ядерная и термоядерная энергетика.
- •49.Радиоактивность. Закон радиоактивного распада. Виды радиоактивных излучений.
- •50.Элементарные частицы. Их основные характеристики. Виды взаимодействий. Классификация и свойства частиц. Теория кварков и идеи объединения фундаментальных взаимодействий.
Потенциальное поле сил
Полем сил называют область пространства, в каждой точке которого на помещенную туда частицу действует сила, закономерно меняющаяся от точки к точке. Примером может служить поле силы тяжести Земли или поле сил сопротивления в потоке жидкости (газа). Если сила в каждой точке силового поля не зависит от времени, то такое поле называют стационарным. Ясно, что силовое поле, стационарное в одной системе отсчета, в другой системе может оказаться и нестационарным. В стационарном силовом поле сила зависит только от положения частицы.
Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от пути. Однако среди стационарных силовых полей имеются такие, в которых эта работа не зависит от пути между точками 1 и 2. Этот класс полей, обладая рядом важнейших свойств, занимает особое место в физике. Рассмотрим свойства таких полей.
Введем определение: стационарное силовое поле, в котором работа силы поля на пути между двумя любыми точками не зависит от формы пути, а зависит только от положения этих точек, называется потенциальным, а сами силы - консервативными.
Если это условие не выполняется, то силовое поле не является потенциальным, а силы поля называют неконсервативными. К числу таких сил принадлежит, например, сила трения, так как работа этой силы зависит в общем случае от пути.
Покажем, что в потенциальном поле работа сил поля на любом замкнутом пути равна нулю. Действительно, любой замкнутый путь (рис. 5.5) можно разбить произвольно на две части: 1а2 и 2b1. Так как поле
|
Рис. 5.5. Работа в потенциальном поле сил |
потенциально, то, по условию
С другой стороны, очевидно, что
Поэтому
что и требовалось доказать.
5.)Динамика вращательного движения твердого тела. Момент инерции. Теорема Штейнера.
Рассмотрим твердое тело, как некую систему (рис. 6.1), состоящую из n точек (m1, m2, ..., mn);
– радиус-вектор i-й точки, проведенный из точки О – центра неподвижной инерциальной системы отсчета. Введем обозначения:
– внешняя сила, действующая на i-ю точку
,
– сила действия со стороны k-й точки на i-ю.
Рис.
6.1
Запишем основное уравнение динамики для точки (см. п. 3.6):
Умножим обе части этого уравнения векторно на
:
Знак производной можно вынести за знак векторного произведения (и знак суммы тоже), тогда
Векторное произведение вектора
точки на её импульс называется моментом импульса (количества движения)
этой точки относительно точки О.
|
|
(6.1.1) |
|
Эти три вектора образуют правую тройку векторов, связанных «правилом буравчика» (рис. 6.2).
Рис.
6.2
Векторное произведение
,
проведенного в точку приложения силы, на эту силу, называется моментом силы
:
|
|
(6.1.2) |
|
Обозначим Li – плечо силы Fi, (рис. 6.3). Учитывая тригонометрическое тождество,
Формула приведения: sin (180°–α) = sin α |
получаем
|
|
(6.1.3) |
|
Рис.
6.3
C учетом новых обозначений:
|
|
(6.1.4) |
|
Запишем систему n уравнений для всех точек системы и сложим их левые и правые части:
Здесь сумма производных равна производной суммы:
где
– момент импульса системы,
– результирующий момент всех внешних сил относительно точки О. Так как
,
то
Отсюда получим основной закон динамики вращательного движения твердого тела, вращающегося вокруг точки.
|
|
(6.1.5) |
|
Момент импульса системы является основной динамической характеристикой вращающегося тела. Сравнивая это уравнение с основным уравнением динамики поступательного движения
Второй закон Ньютона: |
(3.6.1), мы видим их внешнее сходство.
Вращательное движение - движение, при котором все точки тела движутся по окружности некоторого радиуса. Центры всех окружностей лежат на одной прямой, называемой осью вращения. Плоскости окружностей перпендикулярны к оси вращения.
Вращательное движение изучается на примере модели абсолютно твердого тела.
Абсолютно твердым называется тело, расстояние между любыми двумя точками которого не меняется в процессе движения.
Пример вращательного движения твердого тела