Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vsya_fizika.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.36 Mб
Скачать

2.5.Теплоёмкость смеси рабочих тел (газовой смеси)

Теплоемкость газовой смеси вычис­ляется по составу газовой смеси и теплоемкостям отдельных газов, входящих в данную газовую смесь. Газовая смесь может быть задана массовым, объемным и молярным составом. Пусть смесь газов задана массовым составом, тогда масса смеси

.

(2.10)




Где

— масса i-го компонента, входящего в смесь.

Очевидно, для увеличения температуры газовой смеси на

необходимо увеличить температуру на

каждого газа этой смеси. При этом на нагревание каждого газа смеси необходимо затратить количество теплоты

, где

— массовая теплоемкость i-го газа смеси.

Теплоемкость газовой смеси определяется из уравнения теплового баланса

,

Где

— теплоемкость газовой смеси.

Разделив левую и правую части уравнения на

, получим

,

(2.11)




Где

— массовая доля i-го газа, входящего в смесь.

Из выражения (2.11) видно, что теплоемкость смеси газов, заданной массовыми долями (массовая теплоемкость смеси), равна сумме произведений массовых долей на массовую теплоемкость каждого газа.

С помощью аналогичных рассуждений можно найти сходные по структуре с полученным выражением выражения для объёмной и мольной теплоёмкостей газовой смеси.

Равномерное распределение энергии по степеням свободы молекул

Молекулы можно рассматривать как системы материальных точек (атомов) совершающих как поступательное, так и вращательное движения. При исследовании движения тела необходимо знать его положение относительно выбранной системы координат. Для этого вводится понятие о степенях свободы тела. Число независимых координат, которые полностью определяют положение тела в пространстве, называется числом степеней свободы тела.

При движении точки по прямой линии для оценки ее положения необходимо знать одну координату, т.е. точка имеет одну степень свободы. Если точка движения по плоскости, ее положение характеризуется двумя координатами; при этом точка обладает двумя степенями свободы. Положение точки в пространстве определяется 3 координатами. Число степеней свободы обычно обозначают буквой i. Молекулы, которые состоят из обычного атома, считаются материальными точками и имеют три степени свободы (аргон, гелий).

Двухатомные жесткие молекулы, например молекулы водорода, азота и др., обладают пятью степенями свободы: они имеют 3 степени свободы поступательного движения и 2 степени свободы вращения вокруг осей ОХ и OZ. Вращением вокруг оси OY можно пренебречь, т.к. момент инерции ее относительно этой оси пренебрежимо мал. Поэтому вклад энергии вращательного движения вокруг оси OY в суммарную энергию двухатомной молекулы можно не учитывать.

Молекулы, состоящие из трех и более жестко связанных атомов, не лежащих на одной прямой, имеют число степеней свободы i = 6: три степени свободы поступательного движения и 3 степени свободы вращения вокруг осей ОХ, OY и OZ.

В этом случае, если расстояние между атомами может изменяться (нежесткие молекулы), появляются дополнительные степени свободы .

Согласно молекулярно-кинетической теории газов движение молекул носит беспорядочный характер; эта беспорядочность относится ко всем видам движения молекулы. Ни один из видов движения не имеет преимущества перед другим. При статистическом равновесии движений энергия в среднем распределяется равномерно между всеми видами движения. Закон равномерного распределения энергии по степеням свободы молекул можно сформулировать следующим образом: статистически в среднем на каждую степень свободы молекул приходится одинаковая энергия. Поступательное движение молекул характеризуется средней кинетической энергией, равной

. Так как поступательному движению соответствует 3 степени свободы, то в среднем на одну степень свободы движения молекул приходится энергия

В однородном газе, молекулы которого имеют любое число степеней свободы i, каждая молекула в среднем обладает энергией движения, равной

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]