Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vsya_fizika.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.36 Mб
Скачать

2.2.Средняя и истинная теплоёмкости

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. Истинная теплоемкость выражается уравнением (2.2) при определенных параметрах термодинамического процесса, то есть в данном состоянии рабочего тела. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как

, а удельную – как

.

Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считать

истинной теплоёмкостью термодинамической системы при температуре системы равной

, а

- истинной удельной теплоёмкостью рабочего тела при его температуре равной

. Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры от

До

можно определить как

(2.6)




Обычно в таблицах приводятся средние значения теплоемкости

для различных интервалов температур, начинающихся с

.

Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур от

До

, в котором

,

количество удельной теплоты

процесса определяется с использованием табличных значений средних теплоемкостей

следующим образом:

.

(2.7)




2.3.Теплоёмкости при постоянном объёме и давлении

Особый интерес представляют средние и истинные теплоемкости в процессах при постоянном объеме

(изохорная теплоемкость, равная отношению удельного количества теплоты в изохорном процессе к изменению температуры рабочего тела dT) и при постоянном давлении

(изобарная теплоемкость, равная отношению удельного количества теплоты в изобарном процессе к изменению температуры рабочего тела dT).

Для идеальных газов связь между изобарной и изохорной теплоёмкостями и устанавливается известным уравнением Майера .

Из уравнения Майера следует, что изобарная теплоемкость больше изохорной на значение удельной характеристической постоянной идеального газа. Это объясняется тем, что в изохорном процессе (

) внешняя работа не выполняется и теплота расходуется только на изменение внутренней энергии рабочего тела, тогда как в изобарном процессе

(

) теплота расходуется не только на изменение внутренней энергии рабочего тела, зависящей от его температуры, но и на совершение им внешней работы.

Для реальных газов

,

так как при их расширении и

совершается работа не только против внешних сил, но и внутренняя работа против сил взаимодействия между молекулами газа, на что дополнительно расходуется теплота.

В теплотехнике широко применяется отношение теплоемкостей

, которое носит название коэффициента Пуассона (показателя адиабаты). В табл. 2.1 приведены значения

некоторых газов, полученные экспериментально при температуре 15 °С.

Теплоемкости

И

зависят от температуры, следовательно, и показатель адиабаты

должен зависеть от температуры.

Известно, что с повышением температуры теплоёмкость

увеличивается. Поэтому с ростом температуры

уменьшается, приближаясь к единице. Однако всегда остается больше единицы. Обычно зависимость показателя адиабаты от температуры выражается формулой вида

,

где

- значение коэффициента при 00 С;

- коэффициент, принимающий для каждого газа своё постоянное значение.

Кроме того, можно установить следующие широко использующиеся зависимости.

,

(2.8)




и так как

.

(2.9)




Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]