Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vsya_fizika.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.36 Mб
Скачать

17.) Теплоемкость газов. Равномерное распределение энергии по степеням свободы молекул. Массовая, объёмная и мольная удельные теплоёмкости

Известно, что подвод теплоты к рабочему телу или отвод теплоты от него в каком-либо процессе приводит к изменению его температуры. Отношение количества тепло­ты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):

,

(2.1)




Где

— элементарное количество теплоты;

— элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Так как единицей количества теплоты в СИ является джоуль, а температуры — градус К, то единицей теплоемкости будет Дж/К.

В зависимости от внешних условий и характера термодинамического процесса теплота

может либо подводиться к рабочему телу, либо отводиться от него. Учитывая, что система участвует в бесчисленном множестве процессов, сопровождающихся теплообменом, величина

для одного и того же тела может иметь различные значения. В общем случае значение теплоёмкости

лежит в интервале от -∞ до +∞, то есть она может быть любой положительной или отрицательной величиной.

Поэтому обычно в выражении (2.1) при теплоёмкости

указывается индекс "x", который характеризует вид процесса теплообмена

.

(2.2)




Индекс "x" означает, что процесс подвода (или отвода) теплоты идет при постоянном значении какого-либо из параметров, например, давления

, объема

или других.

Ввиду того, что в термодинамике обычно рассматриваются квазистатические процессы теплообмена, теплоемкость

является величиной, относящейся к системе, которая находится в состоянии термодинамического равновесия. Таким образом, теплоемкости являются функциями параметров термодинамической системы. Для простых систем — это функции каких-либо двух из трех параметров:

,

,

.

Опыты показывают, что количество теплоты, подведенное к рабочему телу системы или отведенное от него, всегда пропорционально количеству рабочего тела. Для возможности сравне­ния вводят, как известно, удельные величины теплоемкости, относя подведенную (или отведенную) теплоту количественно к единице рабочего тела.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость — это теплоемкость, отнесенная к единице массы рабочего тела,

.

Единицей измерения массовой теплоемкости является Дж/(кг • К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость — теплоемкость, отнесенная к единице объема рабочего тела,

,

Где

И

— объем и плотность тела при нормальных физических условиях.

Объемная теплоемкость измеряется в Дж/(м3 • К).

Мольная теплоемкость — теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,

,

(2.3)




Где

— количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль • К).

Массовая и мольная теплоемкости связаны следующим соотношением:

или

,

(2.4)




Где

- молекулярная масса.

Объемная теплоемкость газов выражается через мольную как

или

,

(2.5)




Где

м3/моль — мольный объем газа при нормальных условиях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]