
- •1.) Основные физические величины и соотношения кинематики. Нормальное и тангенциальное ускорения при вращательном движении.
- •Основные кинематические понятия
- •Основные кинематические величины
- •2.) Динамика материальной точки. Законы Ньютона. Силы в механике. Момент силы.
- •Момент силы
- •3.) Импульс. Момент импульса. Их основные свойства и характеристики.
- •4.) Энергия и работа. Консервативные силы. Работа в потенциальном поле. Законы сохранения.
- •Работа, мощность, энергия
- •Потенциальное поле сил
- •5.)Динамика вращательного движения твердого тела. Момент инерции. Теорема Штейнера.
- •Момент инерции
- •6.) Кинетическая энергия вращения. Закон сохранения момент импульса.
- •7.) Законы сохранения и их обусловленность симметрией пространства и времени.
- •Законы Кеплера. Закон всемирного тяготения
- •9.) Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца.. Следствия из преобразований Лоренца.
- •10.) Основные положения общей теории относительности а. Эйнштейна.. Альтернативные теории гравитации.
- •11.) Идеальный газ. Давление и температура. Основное уравнение молекулярно-кинетической теории.
- •13.) Распределение газовых молекул по скоростям (распределение Максвелла). Барометрическая формула. (распределение Больцмана). Изменение распределений при изменениях температуры.
- •14.) Теплота и работа. Теплоемкость. Первое начало термодинамики.
- •15.) Теплоемкость идеального газа. Уравнение Майера.
- •16.) Изопроцессы. Политропический процесс. Газ Ван-дер-Ваальса.
- •17.) Теплоемкость газов. Равномерное распределение энергии по степеням свободы молекул. Массовая, объёмная и мольная удельные теплоёмкости
- •2.2.Средняя и истинная теплоёмкости
- •2.3.Теплоёмкости при постоянном объёме и давлении
- •2.5.Теплоёмкость смеси рабочих тел (газовой смеси)
- •18.) Тепловые и холодильные машины, их к.П.Д. Цикл Карно.
- •19.) Энтропия. Второе и третье начала термодинамики. Статистический смысл энтропии.
- •20.) Явления на границе раздела газа, жидкости и твердого тела. Фазовые переходы первого и второго рода. Капиллярные явления.
- •21)Электрический заряд. Закон Кулона. Напряженность электростатического поля. Принцип суперпозиции.
- •22)Потенциал и работа электростатического поля. Циркуляция вектора напряженности. Связь напряженности с потенциалом.
- •23)Диэлектрики в электростатическом поле. Поляризованность. Свободные и связанные заряды. Вектор d и его связь с векторами е и р.
- •24)Проводники в электростатическом поле. Энергия заряженного проводника и конденсатора. Плотность энергии электростатического поля.
- •25)Носители электрического тока в средах. Сила и плотность тока. Уравнение непрерывности.
- •26)Магнитное поле. Закон Био-Савара-Лапласа. Энергия магнитного поля. Плотность энергии магнитного поля.
- •27)Намагниченность вещества. Вектор напряженности магнитного поля и его связь с векторами индукции и намагниченности. Магнитные свойства веществ.
- •28)Закон Ампера. Магнитный момент контура с током. Контур с током в магнитном поле. Поток вектора магнитной индукции.
- •29)Сила Лоренца. Движение заряженной частицы в электрических и магнитных полях. Ускорение заряженных частиц. Эффект Холла.
- •30)Явление электромагнитной индукции. Правило Ленца. Циркуляция вектора напряженности вихревого электрического поля. Токи Фуко.
- •41.Тепловое излучение. Закон Кирхгофа. Закон Стефана-Больцмана. Закон смещения Вина. Формула Планка.
- •42. Фотоэффект и его виды. Уравнение Эйнштейна для внешнего фотоэффекта.
- •43.Волновые свойства микрочастиц. Гипотеза де Бройля и ее подтверждения. Соотношение неопределенностей Гейзенберга.
- •44.Физический смысл волн де Бройля. Понятие о волновой функции. Уравнение Шредингера.
- •45.Прохождение микрочастиц через потенциальный барьер. Туннельный эффект.
- •46.Ядерная модель атома. Оптические спектры атомов, их закономерности. Теория Бора.
- •47.Квантово-механичекая модель строения атома. Квантовые числа и их смысл. Принцип Паули.
- •48.Строение атомного ядра. Ядерные силы. Энергия связи нуклонов в ядре. Ядерная и термоядерная энергетика.
- •49.Радиоактивность. Закон радиоактивного распада. Виды радиоактивных излучений.
- •50.Элементарные частицы. Их основные характеристики. Виды взаимодействий. Классификация и свойства частиц. Теория кварков и идеи объединения фундаментальных взаимодействий.
Основные величины и уравнения кинематики и динамики вращательного движения легко запоминаются, если сопоставить их с величинами и уравнениями поступательно движения
Поступательное движение |
Вращательное движение |
||
Путь |
|
Угол поворота |
|
Скорость |
|
Угловая скорость |
|
Ускорение |
|
Угловое ускорение |
|
|
|||
Основное уравнение динамики поступательного движения |
|
Основное уравнение динамики вращательного движения |
|
Импульс |
|
Момент импульса |
|
Закон сохранения импульса |
|
Закон сохранения момента импульса |
|
Работа |
A = F·S |
Работа вращения |
A = M·φ |
Мощность |
P = F·υ |
Мощность вращения |
P = F·ω |
Кинетическая энергия |
|
Кинетическая энергия вращающегося тела |
|
Энергия тела, катящегося с высоты h |
|
|
|
Потенциальная энергия сжатой пружины |
|
||
Потенциальная энергия гравитационного взаимодействия |
|
1.) Основные физические величины и соотношения кинематики. Нормальное и тангенциальное ускорения при вращательном движении.
Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.
Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей:
Тело отсчета;
Систему измерения положения тела в пространстве (систему координат);
Прибор для измерения времени (Часы).
Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат. Наиболее наглядное представление о радиус-векторе можно получить в евклидовой системе координат, поскольку базис в ней является фиксированным и общим для любого положения тела.
Основные кинематические понятия
Материальная точка — тело, размерами которого по сравнению с характерными расстояниями данной задачи можно пренебречь. Так Землю можно считать Материальной Точкой (М. Т.) при изучении её движения вокруг Солнца, пулю можно считать М. Т. при её движении в поле тяжести Земли, но нельзя считать таковой при учете её вращательного движения в стволе винтовки. При поступательном движении в ряде случаев при помощи понятия М. Т. можно описывать и изменение положения более крупных объектов. Так, например, тепловоз, проходящий расстояние 1 метр, может считаться М. Т., поскольку его ориентация относительно системы координат в процессе движения является фиксированной и не влияет на постановку и ход решения задачи.
Радиус-вектор — Вектор, определяющий положение М. Т. в пространстве:
.
Здесь r1,r2,...,rn — координаты радиус-вектора. Геометрически изображается вектором, проведенным из начала координат к материальной точке. Зависимость радиус-вектора (или его координат ri = ri(t)) от времени
называется законом движения.
Траектория — Годограф радиус-вектора, то есть — воображаемая линия, описываемая концом радиус-вектора в процессе движения. Иными словами, траектория — это линия вдоль которой движется М. Т. При этом закон движения выступает как уравнение, задающее траекторию параметрически. Длину участка траектории между начальным и конечным моментами времени часто называют пройденным расстоянием, длиной пути или вульгарно — путем и обозначают буквой S. При таком описании движения S выступает в качестве обобщенной координаты, а законы движения в этом случае записывается в виде S = S(t) и аналогичны соответствующим законам для координат. Например закон равноускоренного криволинейного движения может быть записан в виде:
,
Где :
— модуль начальной скорости, а aS = aτ — Тангенциальное ускорение.
Описание движения при помощи понятия траектории — один из ключевых моментов классической механики . В квантовой механике движения носит бестраекторный характер, а само понятие траектории теряет смысл.