
- •1. Нестационарные по математическому ожиданию и стационарные процессы.
- •2. Понятие, предмет, задачи эконометрики.
- •3. Основные этапы развития эконометрики.
- •4. Особенности эконометрического метода.
- •5. Стохастика - детерминированный характер социально - экономических явлений.
- •7. Основные этапы моделирования связи методом корреляционно-регрессионного анализа.
- •8. Выбор объекта исследования при построении эконометрической модели.
- •9. . Выбор факторов, включаемых в систему, при построении эконометрической модели.
- •10. Сбор исходной информации при построении эконометрической модели.
- •11. Первичная статистическая обработка при построении эконометрической модели.
- •12. Построение двухмерной линейной модели корреляционно-регрессионного анализа.
- •13. Проверка значимости коэффициентов простой линейной регрессии и адекватности регрессионной модели.
- •14. Оценка существенности параметров линейной регрессии с помощью дисперсионного анализа.
- •15.Нелинейная регрессия
- •16. Множественная линейная регрессия: задача и основные предположения.
- •17. Выбор формы уравнения множественной регрессии.
- •18. Проверка значимости результатов множественной регрессии.
- •19. Метод наименьших квадратов для множественной линейной регрессии.
- •20. Геометрическая интерпретация метода наименьших квадратов.
- •21. Статистические свойства оценок параметров, теорема Гаусса - Маркова.
- •22. Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.
- •24. Использование коэффициента детерминации r2 и f-критерия для проверки статистических гипотез о параметрах регрессии.
- •25. Предпосылки метода наименьших квадратов. Гомоскедастичность дисперсии остатков. Гетероскедастичность.
- •2) Нулевая средняя величина остатков, т.Е.
- •4. Отсутствие автокорреляции остатков. Значения остатков распределены независимо друг от друга.
- •26. Обобщенный метод наименьших квадратов.
- •Сущность обобщённого мнк
- •27. Взвешенный метод наименьших квадратов.
- •28. Регрессионные модели с переменной структурой (фиктивные переменные).
- •29. Экономическая интерпретация многофакторной регрессионной модели.
- •30. Понятие мультиколлинеарности, ее значение при отборе факторов.
- •31. Расчет ошибки репрезентативности и доверительных интервалов при построении моделей.
- •32. Методы исключения тенденции во временных рядах.
- •33. Скользящая средняя и метод центрирования.
- •34. Автокорреляция. Тесты на автокорреляцию остатков (критерий Дарбина-Уотсона).
- •35. Оценивание при наличии автокорреляции остатков.
- •36. Прогнозирование в регрессионных моделях. Хуета какая то
- •37. Система линейных одновременных уравнений и ее идентификация.
- •38. Приведенная форма структурной модели.
- •39Идентификация параметров структурной и приведенной форм модели.
- •40. Оценивание параметров структурной формы модели.
- •42. Двушаговый метод оценки параметров систем одновременных уравнений.
- •43. Экономически значимые примеры систем одновременных уравнений.
- •45. Типы динамических эконометрических моделей. Модели с распределенным лагом и модели авторегрессии.
- •46. Интерпретация моделей: краткосрочный, промежуточный и долгосрочный мультипликаторы.
- •48. Метод Алмон. Метод Койка. Метод главных компонент. Метод Алмон
28. Регрессионные модели с переменной структурой (фиктивные переменные).
. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иныецифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными.
Рассмотрим
применение фиктивных переменных для
функции спроса. Предположим, что по
группе лиц мужского и женского пола
изучается линейная зависимость
потребления кофе от цены. В общем виде
для совокупности обследуемых уравнение
регрессии имеет вид:
,
где y – количество потребляемого
кофе; x– цена.
Аналогичные
уравнения могут быть найдены отдельно
для лиц мужского пола:
и
женского пола:
.
Различия
в потреблении кофе проявятся в различии
средних
и
.
Вместе с тем сила влияния
на
может
быть одинаковой, т.е.
.
В этом случае возможно построение общего
уравнения регрессии с включением в него
фактора «пол» в виде фиктивной переменной.
Объединяя уравнения
и
и,
вводя фиктивные переменные, можно прийти
к следующему выражению:
,
где
и
–
фиктивные переменные, принимающие
значения:
29. Экономическая интерпретация многофакторной регрессионной модели.
на
основе коэффициентов регрессии нельзя
сказать, какой из факторных признаков
оказывает наибольшее влияние на
результативный признак, так как
коэффициенты регрессии между собой
несопоставимы, поскольку они измерены
разными единицами. Чтобы иметь возможность
судить о сравнительной силе влияния
отдельных факторов и о тех резервах,
которые в них заложены, должны быть
вычислены частные коэффициенты
эластичности
,
а также бета-коэффициенты
.
частных коэффициентов эластичности, которые рассчитывают по формуле:
Частный коэффициент эластичности показывают, на сколько процентов в среднем изменяется признак-результат Y с изменением признака-фактора Х на один процент от своего среднего уровня при фиксированном положении других факторов модели
Для определения факторов, в развитии которых заложены наиболее крупные резервы улучшения изучаемого показателя, необходимо учесть различия в степени варьирования вошедших в уравнение факторов. Это можно сделать с помощью β-коэффициентов, которые вычисляют по формуле:
где
- среднее
квадратическое отклонение i-го фактора;
-
среднее квадратическое отклонение
показателя.
30. Понятие мультиколлинеарности, ее значение при отборе факторов.
Мультиколлениарность факторов – тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров
Причинами возникновения мультиколлинеарности между признаками являются:
1. Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса.;
2. Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;
3. Факторные признаки, являющиеся составными элементами друг друга;
4. Факторные признаки, по экономическому смыслу дублирующие друг друга.
5. Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0,8 (rxi xj) и др.
Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон, и в результате нельзя будет оценить воздействие каждого фактора в отдельности.