
- •1. Нестационарные по математическому ожиданию и стационарные процессы.
- •2. Понятие, предмет, задачи эконометрики.
- •3. Основные этапы развития эконометрики.
- •4. Особенности эконометрического метода.
- •5. Стохастика - детерминированный характер социально - экономических явлений.
- •7. Основные этапы моделирования связи методом корреляционно-регрессионного анализа.
- •8. Выбор объекта исследования при построении эконометрической модели.
- •9. . Выбор факторов, включаемых в систему, при построении эконометрической модели.
- •10. Сбор исходной информации при построении эконометрической модели.
- •11. Первичная статистическая обработка при построении эконометрической модели.
- •12. Построение двухмерной линейной модели корреляционно-регрессионного анализа.
- •13. Проверка значимости коэффициентов простой линейной регрессии и адекватности регрессионной модели.
- •14. Оценка существенности параметров линейной регрессии с помощью дисперсионного анализа.
- •15.Нелинейная регрессия
- •16. Множественная линейная регрессия: задача и основные предположения.
- •17. Выбор формы уравнения множественной регрессии.
- •18. Проверка значимости результатов множественной регрессии.
- •19. Метод наименьших квадратов для множественной линейной регрессии.
- •20. Геометрическая интерпретация метода наименьших квадратов.
- •21. Статистические свойства оценок параметров, теорема Гаусса - Маркова.
- •22. Парные, частные коэффициенты корреляции, совокупные коэффициенты множественной корреляции и детерминации. Понятие и связь между ними.
- •24. Использование коэффициента детерминации r2 и f-критерия для проверки статистических гипотез о параметрах регрессии.
- •25. Предпосылки метода наименьших квадратов. Гомоскедастичность дисперсии остатков. Гетероскедастичность.
- •2) Нулевая средняя величина остатков, т.Е.
- •4. Отсутствие автокорреляции остатков. Значения остатков распределены независимо друг от друга.
- •26. Обобщенный метод наименьших квадратов.
- •Сущность обобщённого мнк
- •27. Взвешенный метод наименьших квадратов.
- •28. Регрессионные модели с переменной структурой (фиктивные переменные).
- •29. Экономическая интерпретация многофакторной регрессионной модели.
- •30. Понятие мультиколлинеарности, ее значение при отборе факторов.
- •31. Расчет ошибки репрезентативности и доверительных интервалов при построении моделей.
- •32. Методы исключения тенденции во временных рядах.
- •33. Скользящая средняя и метод центрирования.
- •34. Автокорреляция. Тесты на автокорреляцию остатков (критерий Дарбина-Уотсона).
- •35. Оценивание при наличии автокорреляции остатков.
- •36. Прогнозирование в регрессионных моделях. Хуета какая то
- •37. Система линейных одновременных уравнений и ее идентификация.
- •38. Приведенная форма структурной модели.
- •39Идентификация параметров структурной и приведенной форм модели.
- •40. Оценивание параметров структурной формы модели.
- •42. Двушаговый метод оценки параметров систем одновременных уравнений.
- •43. Экономически значимые примеры систем одновременных уравнений.
- •45. Типы динамических эконометрических моделей. Модели с распределенным лагом и модели авторегрессии.
- •46. Интерпретация моделей: краткосрочный, промежуточный и долгосрочный мультипликаторы.
- •48. Метод Алмон. Метод Койка. Метод главных компонент. Метод Алмон
11. Первичная статистическая обработка при построении эконометрической модели.
В большинстве случаев обработку целесообразно начать с составления таблиц (сводных таблиц) полученных данных. В таблицу можно свести не только числовые данные. К данным качественного характера также могут быть применены простейшие способы количественной обработки. Для всей выборки и отдельных подвыборок могут быть подсчитаны частоты встречаемости (количество случаев появления события), а затем и частости (относительные частоты, т.е. частоты, деленные на количество испытаний) интересующих вас индикаторов, проявлений некоторого вида. В виде чисел в таблицу можно вписать информацию и о тех параметрах выборки, которые предположительно могут оказаться значимыми факторами, но имеются у вас в качественных показателях. Наиболее простыми операциями могут быть: числовое кодирование и перевод качественных показателей в ранги. После создания таблицы на бумаге или компьютере необходимо проверить качество полученных данных. Для этого часто достаточно внимательно осмотреть массив данных. Начать проверку следует с выявления ошибок (описок), которые заключаются в том, что неправильно написан порядок числа.
12. Построение двухмерной линейной модели корреляционно-регрессионного анализа.
Линейная
регрессия сводится к нахождению уравнения
вида
Построение
линейной регрессии сводится к оценке
ее параметров а и b.
МНК
позволяет получить такие оценки
параметров а и b, при
которых сумма квадратов отклонений
фактических значений результативного
признака (у) от
расчетных (теоретических)
минимальна:
Иными словами, из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной:
Решается система нормальных уравнений:
где
,
и
-
средние значения факторов Х, Y и их
произведения;
cov(x,y) – ковариация признаков.
При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции rxy. Существуют разные модификации формулы линейного коэффициента корреляции.
13. Проверка значимости коэффициентов простой линейной регрессии и адекватности регрессионной модели.
1. F-тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы H(нулевой) 0 остатистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфактопределяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
где n – число единиц совокупности;
m – число параметров при переменных x.
Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если Fтабл< Fфакт, то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл> Fфакт, то H0 – гипотеза не отклоняется и признается статистическая незначимость, надежность уравнения регрессии.
2. t-критерий Стьюдента используется для оценки статистической значимости коэффициентов регрессии и коэффициента корреляции.
В качестве основной гипотезы выдвигают гипотезу H0 о незначимом отличии от нуля параметра регрессии или коэффициента корреляции. Альтернативной гипотезой, при этом является гипотеза обратная, т.е. о неравенстве нулю параметра или коэффициента корреляции.
Фактические значения t-критерия определяются по формулам:
где
Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции используют критерий:
где r - оценка коэффициента корреляции, полученная по наблюдаемым данным. tтабл остается прежним.