Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на Алгебру (1-20).doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
1.9 Mб
Скачать

Матричная форма

Система линейных уравнений может быть представлена в матричной форме как:

или:

.

Здесь   — это матрица системы,   — столбец неизвестных, а   — столбец свободных членов. Если к матрице   приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

Как решить систему линейных уравнений?

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходиться иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени  без всяких причудливых вещей вроде   и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы  . Довольно популярный вариант – переменные с индексами:  . Либо начальные буквы латинского алфавита, маленькие и большие:    Не так уж редко можно встретить греческие буквы:   – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:  Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения 

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа   , не спешите в страхе закрывать задачник, в конце-концов, вместо   можно нарисовать солнце, вместо   – птичку, а вместо   – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

Решение системы линейных уравнений методом подстановки («школьный метод»). – Решение системы методом почленного сложения (вычитания) уравнений системы.  Решение системы по формулам Крамера.  Решение системы с помощью обратной матрицы.  Решение системы методом Гаусса.

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Ме́тод Га́усса[1] — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные[2].