Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0622238_74C0B_shpory_po_gidravlike.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
511.8 Кб
Скачать

12.Закон Архимеда, плавание тел.

Закон Архимеда о силе, действующей на погруженное в воду тело, был сформулирован Архимедом за 250 лет до н.э.

На погруженное в жидкость тело действует выталкивающая сила, равная весу жидкости, вытесненной этим телом.

Рассмотрим силы, действующие на погруженное в жидкость тело А (рис. 21):

- сила давления сверху ,

- сила давления снизу ,

- сила давления со стороны ,

- сила веса тела .

Сумма сил давления со стороны боковых

граней равна нулю (т.к. они равны по

величине, но направлены в разные

стороны).

Рисунок 21 - К выводу закона Архимеда

Суммарная сила давления на погруженное тело - выталкивающая сила (сила Архимеда) равна:

,

где - объем тела

Тогда сила Архимеда .

Из закона Архимеда следует, что на тело, погруженное в жидкость, в конечном счете действуют две силы: сила тяжести (вес тела) и выталкивающая архимедова сила . При этом могут иметь следующие основные случаи (рис. 22).

1. Если плотность жидкости и тела одинаковы , то наблюдается безразличное равновесие, т.к. , т.е. тело можно поместить на любую глубину и оно не будет ни всплывать, ни тонуть.

2. Если плотность жидкости меньше плотности тела , то сила веса больше выталкивающей силы и их равнодействующая направлена вниз. Тело будет тонуть.

3. Если плотность жидкости больше плотности тела , вес меньше выталкивающей силы . Погруженное в жидкость тело будет всплывать до тех пор, пока вследствие выхода части его над поверхностью жидкости архимедова сила не уравновесит вес тела. Тело будет плавать на поверхности.

Рисунок 22 – Плавание тел

13.Два метода описания движения жидкости и газа.

Гидродинамика - это раздел гидравлики, в котором изучаются общие законы движения реальной жидкости и ее взаимодействие с твердыми стенками.

Благодаря текучести жидкой среды отсутствуют жесткие связи между ее отдельными частицами, и общий характер движения оказывается более сложным, чем характер движения твердого тела.

Изучение движения представляет значительные сложности в силу того, частицы обладают большой подвижностью и, в общем случае, в различных точках пространства и в различные моменты времени имеют различные скорости по величине и направлению.

При исследовании движения жидкости применяют два основных метода: Лагранжа и Эйлера.

При исследовании по методу Лагранжа рассматривается движение отдельных частиц вдоль их траекторий. Для этого замечают координаты в начальный момент времени . Все последующие координаты точки и составляющие скорости будут зависеть от начальных координат, называемых переменными Лагранжа:

где - переменные Лагранжа.

Если параметры зафиксированы, то приведенное выражение устанавливает кинематические характеристики конкретной жидкой частицы, аналогично тому, как определяют соответствие характеристик материальной точки.

При изменении осуществляется переход от одной жидкой частицы к другой и таким образом можно охарактеризовать движение всей конечной массы жидкости.

Метод Эйлера состоит в определении скорости и давления жидкости в той или иной точке неподвижного пространства, т.е. изучаются поля скоростей и давлений в некоторые последующие моменты времени. Таким образом, движение описывается уравнениями:

В гидравлике обычно применяется метод Эйлера, т.к. он относительно более прост, чем метод Лагранжа (решение уравнений по Лагранжу сложны и трудноразрешимы).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]