
- •Основные физические свойства жидкостей и газов: плотность, удельный вес, удельный объем, сжимаемость, температурное расширение, вязкость, поверхностное натяжение, смачивание.
- •Поверхностное натяжение. Смачивание.
- •Силы, действующие в жидкостях. Абсолютный и относительный покой жидких сред.
- •Гидростатическое давление и его свойства (доказать).
- •Уравнения Эйлера для покоящейся жидкости.
- •Основное уравнение гидростатики
- •Распределение давления в покоящейся жидкости и газе (закон Паскаля).
- •Эпюры гидростатического давления
- •А) пьезометр
- •Б) манометр
- •В) дифференциальный манометр
- •Определение сил гидростатического давления покоящейся жидкости на плоские стенки.
- •10.Определение сил гидростатического давления покоящейся жидкости на криволинейные стенки.
- •Центр давления.
- •12.Закон Архимеда, плавание тел.
- •13.Два метода описания движения жидкости и газа.
- •14.Основные понятия гидродинамики: линии и трубки тока, траектория частицы, поток жидкости, живое сечение потока, смоченный периметр, гидравлический радиус, гидравлический диаметр, расход.
- •15. Уравнение постоянства расхода (уравнение неразрывности)
- •16.Установившееся и неустановившееся, равномерное и неравномерное, напорное и безнапорное движение жидкости.
- •17.Два режима движения жидкостей и газов. Опыты Рейнольдса, критерий Рейнольдса.
- •18.Особенности ламинарного и турбулентного режимов. Эпюры распределения скоростей.
- •Особенности течения при турбулентном режиме
- •19.Уравнения Эйлера для движущейся среды.
- •Уравнение Бернулли для идеальной жидкости.
- •Геометрическая интерпретация уравнения Бернулли.
- •Энергетическая интерпретация уравнения Бернулли.
- •23.Уравнения Бернулли для реальной жидкости.
- •24.Применение уравнения Бернулли для расчета трубопроводных систем.
- •25.Гидравлические сопротивления, их физическая природа и классификация.
А) пьезометр
Б) манометр
В) дифференциальный манометр
Рисунок 14 – Жидкостные приборы для измерения давления
Для уменьшения длины измерительной трубки применяют приборы с жидкостью большей плотностью (например, ртутью). Ртутный манометр представляет собой У-образную трубку, изогнутое колено которого заполняется ртутью (рис. 14б). Под действием давления в сосуде уровень ртути в левом колене манометра понижается, а в правом - повышается.
Дифференциальный манометр применяют в тех случаях, когда необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или в двух точках одного сосуда (рис. 14 в).
Применение жидкостных приборов ограничивается областью сравнительно небольших давлений. Если необходимо измерять высокие давления, применяют приборы второго типа -механические.
Пружинный манометр является наиболее распространенным из механических приборов. Он состоит (рис.15а) из полой тонкостенной изогнутой латунной или стальной трубки (пружины) 1, один конец которой запаян и соединен приводным устройством 2 с зубчатым механизмом 3. На оси зубчатого механизма располагается стрелка 4. Второй конец трубки открыт и соединен с сосудом, в котором замеряется давление. Под действием давления пружина деформируется (распрямляется) и через приводное устройство приводит в действие стрелку, по отклонению которой определяют значение давления по шкале 5.
а) пружинный манометр б) мембранный манометр
Рисунок 15 - Механические приборы для измерения давления.
Мембранные манометры также относятся к механическим (рис. 15б). В них вместо пружины устанавливается тонкая пластина-мембрана 1 (металлическая или из прорезиненной материи). Деформация мембраны посредством приводного устройства передается стрелке, указывающей значение давления.
Механические манометры имеют по сравнению с жидкостными некоторые преимущества: портативность, универсальность, простоту устройства и эксплуатации, большой диапазон измеряемых давлений.
Для измерения давлений меньше атмосферного применяют жидкостные и механические вакуумметры, принцип работы которых тот же, что и у манометров.
Определение сил гидростатического давления покоящейся жидкости на плоские стенки.
Определим как рассчитывается
сила гидростатического давления на
плоскую стенку, которая наклонена под
углом
,
при одностороннем воздействии жидкости
(рис. 18). Одну координатную ось направим
вдоль стенки, а другую по линии пересечения
стенки со свободной поверхностью. Для
удобства развернем проекцию стенки в
плоскость чертежа. Выделим на ней фигуру
площадью
.
Между любой координатой у
и глубиной погружения h
существует следующая связь:
.
Рисунок 18 - К определению силы давления на плоскую стенку.
На каждый бесконечно малый
элемент площади
действует элементарная
сила
,
но давление в центре тяжести
равно
.
Тогда элементарная сила
.
Суммарная сила давления на всю площадь со может быть получена интегрированием по площади :
,
где
- статический
момент площади относительно оси ОХ.
Известно, что статический момент площади равен произведению координаты центра тяжести на площадь фигуры:
,
откуда можно записать, что суммарная сила гидростатического давления равна:
или
,
где
- давление в центре тяжести.
Таким образом, сила гидростатического давления на плоскую поверхность равна произведению гидростатического давления в центре тяжести этой поверхности на ее площадь.
Центром давления называется точка приложения полной силы гидростатического давления, действующей на данную поверхность.
Для определения положения центра давления воспользуемся известной теоремой статики: момент равнодействующей силы равен сумме моментов сил ее составляющих.
Т.е.
.
Из этого выражения можно найти искомую координату центра давления (точки D):
,
где
- момент инерции площади относительно
оси ОХ.
Но момент инерции относительно
любой оси может быть выражен через
момент инерции
относительно центральной оси
(оси, проходящей через центр тяжести
фигуры).
,
где а
- расстояние между
осями (в нашем случае
)
Тогда
или
.
Используя уравнение связи между глубиной h и координатой y, получим уравнение для определения глубины погружения центра давления:
.
Это выражение показывает, что центр давления лежит всегда ниже центра тяжести (кроме давления на горизонтальную плоскость, когда они совпадают).