
- •1,Кинетические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин от времени.
- •2.Кинематические характеристики вращательного движения твердого тела. Момент инерции. Кинетическая энергия вращательного движения. Теорема Штейнера.
- •3.Момент силы относительно неподвижной точки, неподвижной оси. Уравнение динамики вращательного движения твердого тела.
- •4.Момент импульса относительно неподвижной точки и момент импульса твердого тела.
- •5. Законы сохранения в механике.
- •6. Гармонические колебания и их характеристики. Квазиупругая сила.
- •7. Энергия гармонических колебаний.
- •8. Простейшие колебательные системы. Пружинный, физический и математический маятники.
- •9.Сложение одинаково направленных колебаний.
- •10. Затухающие колебания. Логарифмический декремент затухания.
- •11.Распределение Максвелла. Скорость молекул.
- •12. Барометрическая формула.
- •13. Явление переноса. Диффузия, внутреннее трение, теплопроводность.
- •14. Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •15. Первый закон термодинамики. Работа газа при изменении объема.
- •16.Теплоемкости идеального газа. Закон Майера.
- •17.Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •18.Круговые процессы(циклы). Обратимый и необратимый циклы. Кпд цикла.
- •19. Цикл Карно и его кпд
- •20. Энтропия. Термодинамическое толкование энтропии. Изменение энтропии в обратимых изопроцессах.
- •21.Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •22. Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •23. Теорема Гауса для векторов напряженности электрического поля.
- •24. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •4. Поле объемно заряженного шара. Шар
- •25. Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал. Разность потенциалов.
- •26. Виды диэлектриков. Поляризация диэлектриков.
- •27.Напряженность электрического поля. Графическое изобр электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •§ 89. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •28. Электроемкость проводника. Емкость плоского конденсатора. Параллельное и последовательное соединение конденсаторов.
- •29. Магнитное поле и его характеристики. Закон Био-Савара-Лапласа и его применение (бесконечный ток, конечный ток, круговой ток)
- •30. Циркуляция вектора индукции магнитного поля.
- •31. Закон Ампера. Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •32. Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •33. Работа по перемещению проводника с током и замкнутого контура в магнитном поле.
- •34. Явление индукции. Закон Фарадея.
- •35. Самоиндукция. Индуктивность. Взаимная индукция.
- •36.Атом во внешнем поле. Диа- и парамагнетизм.
- •37. Вектор намагничивания. Магнитное поле в веществе.
- •38. Уравнение Максвелла в интегральной форме.
- •39. Интерференция света. Условная интерференция.
- •40. Опыт наблюдения интерференции (опыт Юнга, плоскости пластин, кольца Ньютона)
- •2. Кольца Ньютона
- •41. Дифракция Френеля. (на отверстии и диске)
- •42.Дифрацкия Фраунгофера (на щели и решетке)
- •43. Естественный и поляризованный свет. Закон Малюса.
- •44. Поляризация при отражении и преломлении. Закон Брюстера.
- •45. Тепловое излучение и его характеристики. Закон Кирхгофа.
- •46. Излучение черного тела. Законы Стефана-Больцмана и Вина.
- •47. Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •48. Фотоэффект. Формула Эйнштейна для фотоэффекта. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •49. Масса и Импульс фотона. Давление света.
- •50. Эффект Комптона.
- •51. Волны Де-Бройля.
- •52. Соотношение неопределенной Гейзенберга.
- •53. Уравнение Шредингера. Физический смысл ψ-функции.
- •54.Частица в потенциальной яме.
- •55. Атом водорода в квантовой механике. Квантовые числа. Заполнение эл. Оболочек.
- •56. Принцип Паули, спектр атома водорода, атомные спектры, постоянная Ридберга.
- •57. Политропический процесс, уравнение политропы.
- •58. Уравнение Ван-Дер-Ваальса.
- •58. Второе и третье начала термодинамики.
- •59. Сила и плотность тока, сторонние силы эдс источника.
- •60. Расчет полей соленоида и тороида.
- •62. Энергия системы зарядов. Энергия заряженного проводника. Энергия электрического поля. Объемная плотность энергии.
- •— Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор
- •63. Волновой процесс и его характеристики. Ур-е бегущей волны.
- •64. Электромагнитные волны.
38. Уравнение Максвелла в интегральной форме.
Уравнения Максвелла для электромагнитного поля
Введение Максвеллом понятия тока смещения привело его к завершению созданной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было впоследствии подтверждено.
В основе теории Максвелла лежат рассмотренные выше четыре уравнения:
1.
Электрическое поле (см. § 137) может
быть как потенциальным (eq),
так
и вихревым (ЕB),
поэтому напряженность суммарного поля
Е=ЕQ+ЕB.
Так как циркуляция вектора eq
равна
нулю (см. (137.3)), а циркуляция вектора ЕB
определяется выражением (137.2), то
циркуляция вектора напряженности
суммарного поля
Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и меняющиеся во времени магнитные поля.
2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):
Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.
3. Теорема Гаусса для поля D (см. (89.3))
Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью , то формула (139.1) запишется в виде
4. Теорема Гаусса для поля В (см. (120.3)):
Итак,
полная
система уравнений Максвелла в
интегральной форме:
Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):
D=0E,
В=0Н,
j=E,
где 0 и 0 — соответственно электрическая и магнитная постоянные, и — соответственно диэлектрическая и магнитная проницаемости, — удельная проводимость вещества.
Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
Для стационарных полей (Е=const и В=const) уравнения Максвелла примут вид
т. е. источниками электрического поля в данном случае являются только электрические заряды, источниками магнитного — только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.
Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса
можно представить полную систему уравнений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):
Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла — интегральная
и дифференциальная — эквивалентны. Однако когда имеются поверхности разрыва — поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений является более общей.
Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Чтобы достичь математической эквивалентности обеих форм уравнений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):
D1n=D2n, E1=E2, B1n=B2n, H1= H2
(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов проводимости).
Уравнения Максвелла — наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.
Теория Максвелла, являясь обобщением основных законов электрических и магнитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явления. Одним из важных выводов этой теории явилось существование магнитного поля токов смещения (см. § 138), что позволило Максвеллу предсказать существование электромагнитных волн — переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3•108 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857—1894), доказавшим, что законы их возбуждения и распространения полностью описываются уравнениями Максвелла. Таким образом, теория Максвелла была экспериментально подтверждена.
К электромагнитному полю применим только принцип относительности Эйнштейна, так как факт распространения электромагнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.
Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инерциальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инвариантны относительно преобразований Лоренца: их вид не меняется при переходе от одной инерциальной системы отсчета к другой, хотя величины Е, В, D, Н в них преобразуются по определенным правилам.
Из принципа относительности вытекает, что отдельное рассмотрение электрического и магнитного полей имеет относительный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь неподвижными относительно одной инерциальной системы отсчета, движутся относительно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвижный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке пространства постоянное магнитное поле, движется относительно других инерциальных систем, и создаваемое им переменное магнитное поле возбуждает вихревое электрическое поле.
Таким образом, теория Максвелла, ее экспериментальное подтверждение, а также принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базирующейся на представлении об электромагнитном поле.