
- •1,Кинетические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин от времени.
- •2.Кинематические характеристики вращательного движения твердого тела. Момент инерции. Кинетическая энергия вращательного движения. Теорема Штейнера.
- •3.Момент силы относительно неподвижной точки, неподвижной оси. Уравнение динамики вращательного движения твердого тела.
- •4.Момент импульса относительно неподвижной точки и момент импульса твердого тела.
- •5. Законы сохранения в механике.
- •6. Гармонические колебания и их характеристики. Квазиупругая сила.
- •7. Энергия гармонических колебаний.
- •8. Простейшие колебательные системы. Пружинный, физический и математический маятники.
- •9.Сложение одинаково направленных колебаний.
- •10. Затухающие колебания. Логарифмический декремент затухания.
- •11.Распределение Максвелла. Скорость молекул.
- •12. Барометрическая формула.
- •13. Явление переноса. Диффузия, внутреннее трение, теплопроводность.
- •14. Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •15. Первый закон термодинамики. Работа газа при изменении объема.
- •16.Теплоемкости идеального газа. Закон Майера.
- •17.Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •18.Круговые процессы(циклы). Обратимый и необратимый циклы. Кпд цикла.
- •19. Цикл Карно и его кпд
- •20. Энтропия. Термодинамическое толкование энтропии. Изменение энтропии в обратимых изопроцессах.
- •21.Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •22. Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •23. Теорема Гауса для векторов напряженности электрического поля.
- •24. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •4. Поле объемно заряженного шара. Шар
- •25. Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал. Разность потенциалов.
- •26. Виды диэлектриков. Поляризация диэлектриков.
- •27.Напряженность электрического поля. Графическое изобр электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •§ 89. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •28. Электроемкость проводника. Емкость плоского конденсатора. Параллельное и последовательное соединение конденсаторов.
- •29. Магнитное поле и его характеристики. Закон Био-Савара-Лапласа и его применение (бесконечный ток, конечный ток, круговой ток)
- •30. Циркуляция вектора индукции магнитного поля.
- •31. Закон Ампера. Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •32. Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •33. Работа по перемещению проводника с током и замкнутого контура в магнитном поле.
- •34. Явление индукции. Закон Фарадея.
- •35. Самоиндукция. Индуктивность. Взаимная индукция.
- •36.Атом во внешнем поле. Диа- и парамагнетизм.
- •37. Вектор намагничивания. Магнитное поле в веществе.
- •38. Уравнение Максвелла в интегральной форме.
- •39. Интерференция света. Условная интерференция.
- •40. Опыт наблюдения интерференции (опыт Юнга, плоскости пластин, кольца Ньютона)
- •2. Кольца Ньютона
- •41. Дифракция Френеля. (на отверстии и диске)
- •42.Дифрацкия Фраунгофера (на щели и решетке)
- •43. Естественный и поляризованный свет. Закон Малюса.
- •44. Поляризация при отражении и преломлении. Закон Брюстера.
- •45. Тепловое излучение и его характеристики. Закон Кирхгофа.
- •46. Излучение черного тела. Законы Стефана-Больцмана и Вина.
- •47. Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •48. Фотоэффект. Формула Эйнштейна для фотоэффекта. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •49. Масса и Импульс фотона. Давление света.
- •50. Эффект Комптона.
- •51. Волны Де-Бройля.
- •52. Соотношение неопределенной Гейзенберга.
- •53. Уравнение Шредингера. Физический смысл ψ-функции.
- •54.Частица в потенциальной яме.
- •55. Атом водорода в квантовой механике. Квантовые числа. Заполнение эл. Оболочек.
- •56. Принцип Паули, спектр атома водорода, атомные спектры, постоянная Ридберга.
- •57. Политропический процесс, уравнение политропы.
- •58. Уравнение Ван-Дер-Ваальса.
- •58. Второе и третье начала термодинамики.
- •59. Сила и плотность тока, сторонние силы эдс источника.
- •60. Расчет полей соленоида и тороида.
- •62. Энергия системы зарядов. Энергия заряженного проводника. Энергия электрического поля. Объемная плотность энергии.
- •— Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор
- •63. Волновой процесс и его характеристики. Ур-е бегущей волны.
- •64. Электромагнитные волны.
29. Магнитное поле и его характеристики. Закон Био-Савара-Лапласа и его применение (бесконечный ток, конечный ток, круговой ток)
Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле. Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34).Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поляприводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.
Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,— южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).
Рис.
34. Схемы действия магнитного поля на
движущиеся электрические заряды:
положительный ион (а) и электрон (б).
Рис.
35. Магнитное поле, созданное постоянным
магнитом.
Рис. 36. Однородное магнитное поле между полюсами постоянного магнита.
Рис.
37. Магнитный поток, пронизывающий
катушку при перпендикулярном (а) и
наклонном (б) ее положениях по отношению
к направлению магнитных силовых линий.
Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,— дальше друг от друга. Силовые линии нигде не пересекаются.
Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.
Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.
Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791 —1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.
Закон
Био — Савара — Лапласа для
проводника с током I,
элемент которого dlсоздает
в некоторой точкеА(рис.
164) индукцию поля dB,
записывается в виде
где
dl—
вектор, по модулю равный длине dlэлемента
проводника и совпадающий по направлению
с током, r
— радиус-вектор,
проведенный из элемента dlпроводника в точкуАполя, r— модуль радиуса-вектора г. Направление dBперпендикулярно dlи r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.
Модуль
вектора dBопределяется
выражением
где а — угол между векторами dlи г.
Для
магнитного поля, как и для электрического,
справедлив принцип
суперпозиции: магнитная
индукция результирующего поля,
создаваемого несколькими токами
или движущимися зарядами, равна векторной
сумме магнитных индукций складываемых
полей, создаваемых каждым током или
движущимся зарядом в отдельности:
Расчет характеристик магнитного поля (В и Н) по приведенным формулам в общем случае довольно сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции позволяет довольно просто рассчитать конкретные поля. Рассмотрим два примера.
1. Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165).
В произвольной точкеА, удаленной от оси проводника на расстояние R, векторы dBот всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов dBможно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол а (угол между векторами dlи r), выразив через него все остальные величины. Из рис. 165 следует, что
(радиус
дуги CDвследствие
малости dlравен
r,
и
угол FDCпо
этой же причине можно считать прямым).
Подставив эти выражения в (110.2), получим,
что магнитная индукция, создаваемая
одним элементом проводника, равна
Так
как угол а для всех элементов прямого
тока изменяется в пределах от 0 до я,
то, согласно (110.3) и (110.4),
Следовательно,
магнитная индукция поля прямого тока
2.
Магнитное поле в центре кругового
проводника с током (рис.
166). Как следует из рисунка, все
элементы кругового проводника с током
создают в центре магнитное поле
одинакового направления — вдоль нормали
от витка.
Поэтому сложение векторов dBможно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору(sin=1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2)
,
Тогда
Следовательно, магнитная индукция поля в центре кругового проводника с током