
- •1,Кинетические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин от времени.
- •2.Кинематические характеристики вращательного движения твердого тела. Момент инерции. Кинетическая энергия вращательного движения. Теорема Штейнера.
- •3.Момент силы относительно неподвижной точки, неподвижной оси. Уравнение динамики вращательного движения твердого тела.
- •4.Момент импульса относительно неподвижной точки и момент импульса твердого тела.
- •5. Законы сохранения в механике.
- •6. Гармонические колебания и их характеристики. Квазиупругая сила.
- •7. Энергия гармонических колебаний.
- •8. Простейшие колебательные системы. Пружинный, физический и математический маятники.
- •9.Сложение одинаково направленных колебаний.
- •10. Затухающие колебания. Логарифмический декремент затухания.
- •11.Распределение Максвелла. Скорость молекул.
- •12. Барометрическая формула.
- •13. Явление переноса. Диффузия, внутреннее трение, теплопроводность.
- •14. Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •15. Первый закон термодинамики. Работа газа при изменении объема.
- •16.Теплоемкости идеального газа. Закон Майера.
- •17.Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •18.Круговые процессы(циклы). Обратимый и необратимый циклы. Кпд цикла.
- •19. Цикл Карно и его кпд
- •20. Энтропия. Термодинамическое толкование энтропии. Изменение энтропии в обратимых изопроцессах.
- •21.Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •22. Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •23. Теорема Гауса для векторов напряженности электрического поля.
- •24. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •4. Поле объемно заряженного шара. Шар
- •25. Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал. Разность потенциалов.
- •26. Виды диэлектриков. Поляризация диэлектриков.
- •27.Напряженность электрического поля. Графическое изобр электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •§ 89. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •28. Электроемкость проводника. Емкость плоского конденсатора. Параллельное и последовательное соединение конденсаторов.
- •29. Магнитное поле и его характеристики. Закон Био-Савара-Лапласа и его применение (бесконечный ток, конечный ток, круговой ток)
- •30. Циркуляция вектора индукции магнитного поля.
- •31. Закон Ампера. Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •32. Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •33. Работа по перемещению проводника с током и замкнутого контура в магнитном поле.
- •34. Явление индукции. Закон Фарадея.
- •35. Самоиндукция. Индуктивность. Взаимная индукция.
- •36.Атом во внешнем поле. Диа- и парамагнетизм.
- •37. Вектор намагничивания. Магнитное поле в веществе.
- •38. Уравнение Максвелла в интегральной форме.
- •39. Интерференция света. Условная интерференция.
- •40. Опыт наблюдения интерференции (опыт Юнга, плоскости пластин, кольца Ньютона)
- •2. Кольца Ньютона
- •41. Дифракция Френеля. (на отверстии и диске)
- •42.Дифрацкия Фраунгофера (на щели и решетке)
- •43. Естественный и поляризованный свет. Закон Малюса.
- •44. Поляризация при отражении и преломлении. Закон Брюстера.
- •45. Тепловое излучение и его характеристики. Закон Кирхгофа.
- •46. Излучение черного тела. Законы Стефана-Больцмана и Вина.
- •47. Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •48. Фотоэффект. Формула Эйнштейна для фотоэффекта. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •49. Масса и Импульс фотона. Давление света.
- •50. Эффект Комптона.
- •51. Волны Де-Бройля.
- •52. Соотношение неопределенной Гейзенберга.
- •53. Уравнение Шредингера. Физический смысл ψ-функции.
- •54.Частица в потенциальной яме.
- •55. Атом водорода в квантовой механике. Квантовые числа. Заполнение эл. Оболочек.
- •56. Принцип Паули, спектр атома водорода, атомные спектры, постоянная Ридберга.
- •57. Политропический процесс, уравнение политропы.
- •58. Уравнение Ван-Дер-Ваальса.
- •58. Второе и третье начала термодинамики.
- •59. Сила и плотность тока, сторонние силы эдс источника.
- •60. Расчет полей соленоида и тороида.
- •62. Энергия системы зарядов. Энергия заряженного проводника. Энергия электрического поля. Объемная плотность энергии.
- •— Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор
- •63. Волновой процесс и его характеристики. Ур-е бегущей волны.
- •64. Электромагнитные волны.
24. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотностью + (=dQ/dS—заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cos=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с Е), т.е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен S. Согласно теореме Гаусса (81.2), 2ES = S/0, откуда
E=/(20). (82.1)
Из
формулы (82.1) вытекает, что Е
не
зависит от длины цилиндра, т. е.
напряженность поля на любых расстояниях
одинакова по модулю, иными словами,
поле
равномерно заряженной плоскости однородно.
2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разноименными зарядами с поверхностными плотностями+ и -. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательной плоскости. Слева и справа от плоскостей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E=0. В области между плоскостями E=E++E- (E+ и E-определяются по формуле (82.1)), поэтому результирующая напряженность
E=/0. (82.2)
Таким образом, результирующая напряженность поля в области между плоскостями описывается формулой (82.2), а вне объема, ограниченного плоскостями, равна нулю.
3. Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса Rс общим зарядом Qзаряжена равномерно с поверхностной плотностью +0. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией
.
Поэтому
линии напряженности направлены
радиально (рис. 128). Построим мысленно
сферу радиуса r,
имеющую
общий центр с заряженной сферой. Если
r>R,
то внутрь поверхности попадает весь
заряд Q,
создающий рассматриваемое поле, и, по
теореме Гаусса (81.2), 4r2E=Q/0,
откуда
При r>Rполе убывает с расстоянием rпо такому же закону, как у точечного заряда. График зависимости E от r приведен на рис. 129. Если r'<R, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).