- •1,Кинетические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин от времени.
- •2.Кинематические характеристики вращательного движения твердого тела. Момент инерции. Кинетическая энергия вращательного движения. Теорема Штейнера.
- •3.Момент силы относительно неподвижной точки, неподвижной оси. Уравнение динамики вращательного движения твердого тела.
- •4.Момент импульса относительно неподвижной точки и момент импульса твердого тела.
- •5. Законы сохранения в механике.
- •6. Гармонические колебания и их характеристики. Квазиупругая сила.
- •7. Энергия гармонических колебаний.
- •8. Простейшие колебательные системы. Пружинный, физический и математический маятники.
- •9.Сложение одинаково направленных колебаний.
- •10. Затухающие колебания. Логарифмический декремент затухания.
- •11.Распределение Максвелла. Скорость молекул.
- •12. Барометрическая формула.
- •13. Явление переноса. Диффузия, внутреннее трение, теплопроводность.
- •14. Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •15. Первый закон термодинамики. Работа газа при изменении объема.
- •16.Теплоемкости идеального газа. Закон Майера.
- •17.Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •18.Круговые процессы(циклы). Обратимый и необратимый циклы. Кпд цикла.
- •19. Цикл Карно и его кпд
- •20. Энтропия. Термодинамическое толкование энтропии. Изменение энтропии в обратимых изопроцессах.
- •21.Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •22. Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •23. Теорема Гауса для векторов напряженности электрического поля.
- •24. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •4. Поле объемно заряженного шара. Шар
- •25. Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал. Разность потенциалов.
- •26. Виды диэлектриков. Поляризация диэлектриков.
- •27.Напряженность электрического поля. Графическое изобр электрических полей. Принцип суперпозиции. Поле точечного заряда.
- •§ 89. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •28. Электроемкость проводника. Емкость плоского конденсатора. Параллельное и последовательное соединение конденсаторов.
- •29. Магнитное поле и его характеристики. Закон Био-Савара-Лапласа и его применение (бесконечный ток, конечный ток, круговой ток)
- •30. Циркуляция вектора индукции магнитного поля.
- •31. Закон Ампера. Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •32. Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •33. Работа по перемещению проводника с током и замкнутого контура в магнитном поле.
- •34. Явление индукции. Закон Фарадея.
- •35. Самоиндукция. Индуктивность. Взаимная индукция.
- •36.Атом во внешнем поле. Диа- и парамагнетизм.
- •37. Вектор намагничивания. Магнитное поле в веществе.
- •38. Уравнение Максвелла в интегральной форме.
- •39. Интерференция света. Условная интерференция.
- •40. Опыт наблюдения интерференции (опыт Юнга, плоскости пластин, кольца Ньютона)
- •2. Кольца Ньютона
- •41. Дифракция Френеля. (на отверстии и диске)
- •42.Дифрацкия Фраунгофера (на щели и решетке)
- •43. Естественный и поляризованный свет. Закон Малюса.
- •44. Поляризация при отражении и преломлении. Закон Брюстера.
- •45. Тепловое излучение и его характеристики. Закон Кирхгофа.
- •46. Излучение черного тела. Законы Стефана-Больцмана и Вина.
- •47. Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •48. Фотоэффект. Формула Эйнштейна для фотоэффекта. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •49. Масса и Импульс фотона. Давление света.
- •50. Эффект Комптона.
- •51. Волны Де-Бройля.
- •52. Соотношение неопределенной Гейзенберга.
- •53. Уравнение Шредингера. Физический смысл ψ-функции.
- •54.Частица в потенциальной яме.
- •55. Атом водорода в квантовой механике. Квантовые числа. Заполнение эл. Оболочек.
- •56. Принцип Паули, спектр атома водорода, атомные спектры, постоянная Ридберга.
- •57. Политропический процесс, уравнение политропы.
- •58. Уравнение Ван-Дер-Ваальса.
- •58. Второе и третье начала термодинамики.
- •59. Сила и плотность тока, сторонние силы эдс источника.
- •60. Расчет полей соленоида и тороида.
- •62. Энергия системы зарядов. Энергия заряженного проводника. Энергия электрического поля. Объемная плотность энергии.
- •— Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор
- •63. Волновой процесс и его характеристики. Ур-е бегущей волны.
- •64. Электромагнитные волны.
16.Теплоемкости идеального газа. Закон Майера.
Удельная теплоемкость – величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 к и определяется как
(6.11)
Молярная теплоемкость – величина, равная количеству теплоты, необходимому для нагревания 1 моля на 1 к
(6.12)
где
– число молей.
Удельная теплоемкость связана с молярной теплоемкостью соотношением:
(6.13)
где М – молекулярная масса.
Найдем выражения для молярной теплоемкости в изохорном и изобарном процессах. Для этого запишем первое начало термодинамики для 1-го моля газа
(6.14)
При V = const все сообщенное газу тепло идет на увеличение его внутренней энергии, т. е.
(6.15)
При
из уравнения Клапейрона – Менделеева
имеем
(6.16)
Откуда выражение для теплоемкости имеет вид
(6.17)
Так
как
а
,
то имеет место следующее соотношение,
которое носит название уравнения Майера
(6.18)
Таким образом, теплоемкость в изобарном процессе равна
(6.19)
Из
формулы (6.19) следует, что
всегда больше
на величину газовой постоянной R.
Это объясняется тем, что при нагревании
газа при постоянном давлении требуется
дополнительное количество теплоты на
совершение работы расширения газа.
Отсюда вытекает физический смысл
универсальной газовой постоянной R
– это работа, которую надо совершить
при изобарическом нагревании 1 моля
газа на 1 К.
Отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме можно выразить как
17.Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
Адиабатическим
называется процесс, при котором
отсутствует теплообмен между
термодинамической системой и окружающей
средой
Из первого начала следует, что
(6.29)
или
(6.30)
Найдем уравнение, связывающее параметры состояния в адиабатном процессе. Для этого продифференцируем уравнение состояния для 1 моля газа
(6.31)
Разделив уравнение (6.31) на выражение (6.30), получим
(6.32)
Разделим
переменные, тогда с учётом
выражение (6.32) примет вид
(6.33)
Интегрируя (6.32) в пределах от Р1 до Р2 и от V1 до V2, получим
;
(6.34 )
Или
или
(6.35)
Так как состояния 1 и 2 выбраны произвольно, то (6.35) можно записать:
(6.36)
Уравнение (6.36) называется уравнением Пуассона, которое описывает адиабатический процесс. Используя уравнения Клапейрона – Менделеева, можно записать уравнение Пуассона в виде
(6.37)
или
(6.38)
где
– коэффициент Пуассона, равный
;
при
i
= 3
= 1,67,
при i
= 5,
= 1,4.
График
адиабаты представлен на рис. 6.5. Адиабата
более крута, чем изотерма. Это объясняется
тем, что увеличение давления газа
обусловлено не только уменьшением
объема как при изотермическом сжатии,
но и повышением температуры. При
адиабатическом процессе изменяются
все три параметра P,
V
и T
.
Рис.6.5
(6.40)
Работа, совершаемая газом при адиабатическом процессе, численно равная заштрихованной площади на рис. 6.5, меньше, чем при изотермическом процессе.
