
- •1. Понятие о микропроцессорах (мп). Замена устройств с жесткой логикой на мп управление.
- •2. Выбор мп комплекта (мпк. Основные критерии выбора.
- •3. Основные параметры мп и оэвм.
- •4. Микро-эвм и оэвм на основе мп. Основные семейства современных оэвм.
- •5. Классификация оэвм и мп. Признаки классификации оэвм.
- •6. Архитектура мп систем (мпс). Основные составляющие мпс.
- •7. Однокристальные, одноплатные и многоплатные микро-эвм. Основные параметры и особенности.
- •8. Микро-эвм и контроллеры. Основные отличия и сходство.
- •9. Общий принцип обработки информации в мпс. Временные соотношения при обмене информацией.
- •10. Cхемный принцип управления мп.
- •11. Микропрограммный принцип управления мп.
- •12. Типовая структура устройства управления, основанного на микропрограммном принципе.
- •13. Структура мп, основанного на схемном принципе управления (на примере мп серии к580).
- •14. Основные составляющие внутренней структуры оэвм семейства mcs-51.
- •15. Временная диаграмма работы оэвм.
- •16. Организация стека в мпс.
- •17. Режим прямого доступа к памяти (пдп).
- •18. Система прерывания в микро-эвм.
- •19. Форматы данных и команд в мпс.
- •20. Способы адресации.
- •21. Система команд мп и оэвм. Структура команды, Информация, необходимая для записи программ.
- •22. Система команд мп и оэвм Группы команд.
- •23. Программирование мп и оэвм. Этапы составления программы.
- •24. Распределение ресурсов при составлении программы. Оценка времени выполнения программы.
- •25. Однокристальные микро - эвм (оэвм) - новые изделия мп техники. Особенности, основные характеристики (на примере семейства mcs-51).
- •26. Оэвм семейства mcs-51. Структура, характеристики, назначение выводов.
- •27. Оэвм семейства mcs-51. Особенности построения блока памяти программ.
- •28. Оэвм семейства mcs-51. Особенности построения блока памяти данных.
- •29. Оэвм семейства mcs-51. Организация ввода / вывода. Назначение портов оэвм в различных конфигурациях системы.
- •30. Синхронизация оэвм семейства mcs-51. Временная диаграмма.
- •31. Узел таймеров оэвм семейства mcs-51.
- •32. Система прерываний оэвм семейства mcs-51.
- •33. Регистр состояний оэвм семейства mcs-5.
- •34. Система команд оэвм семейства mcs-51. Информация, необходимая для составления программ.
- •35. Группы команд оэвм семейства mcs-51. Их краткая характеристика.
- •36. Способы адресации в командах оэвм семейства mcs-51
- •37. Страничная адресация в командах оэвм семейства mcs-51 (на примере команд переходов и вызова подпрограмм).
- •38. Построение мпс на основе оэвм семейства mcs-51.
- •39. Примеры программирования оэвм семейства mcs-51.
- •40. Запоминающие устройства мпс. Основные параметры и классификация.
- •41. Оперативные запоминающие устройства мпс (озу). Классификация и основные параметры.
- •42. Структура и работа бис озу статистического типа.
- •43. Постоянные запоминающие устройства (пзу). Виды пзу и их основные характеристики.
- •44. Перепрограммируемые пзу (ппзу). Принципы запоминания и стирания информации.
- •45. Интерфейсные схемы мпс (на примере мпк к580).
- •46. Бис усапп кр580ви53. Принцип действия, порядок программирования.
- •47. Бис ппи кр580вв55а. Основные режимы работы. Порядок программирования.
- •48. Основные особенности и характеристики ацп и цап. Их подключение к оэвм.
- •49. Шинные формирователи, супервизоры, регистры и другие вспомогательные элементы мпс.
- •50. Программное обеспечение мпс (по мпс). Классификация, структура.
- •51. Иерархия уровней по мпс. Характеристики отдельных модулей.
- •52. Средства отладки по мпс. Характеристики, требования к отдельным составляющим.
- •53. Языки программирования мпс. Иерархия уровней.
- •54. Средства диагностики мпс.
42. Структура и работа бис озу статистического типа.
БИС ОЗУ могут иметь различную структуру. Под структурой понимается количество разрядов числа, которые могут одновременно записываться или считываться из БИС, а также ее информационная емкость. Так, если говорят, что структура БИС ОЗУ - 1024х1,то это означает, что БИС имеет один вход и один выход и может хранить 1024 бита информации. Такая структура называется одноразрядной. Подобные БИС были весьма распространены в начале развития МП техники. Однако есть и многоразрядные БИС, например, структуры 1024х4, что означает, что одновременно можно записать в БИС 4 разряда, а емкость БИС составляет 1024х4=4096 бит.
Принцип запоминания информации в ячейках памяти БИС также может быть различным. Существуют статические БИС ОЗУ. Элементом запоминания в них, который хранит информацию в таких ОЗУ, является триггер. Поэтому при включенном питании элемент памяти будет хранить информацию сколь угодно долго. Это позволяет упростить схемы управления записью-считыванием. Однако ячейки памяти такого вида занимают достаточно много места на кристалле, что не позволяет создавать БИС большой емкости. Кроме того, такие БИС потребляют сравнительно большую мощность.
- Другим принципом запоминания информации является динамический способ. Элементом памяти таких ОЗУ служит емкость, которая заряжается определенным образом при записи информации в данную ячейку. Однако со временем емкость разряжается, и информация из ячейки пропадает. Для исключения этого используют так называемую регенерацию ячеек памяти. Для этого не реже, например, одного раза в 2 мс на адресные входы БИС подается последовательность импульсов (т.е. происходит перебор адресов ячеек, но информация в них не записывается), емкости ячеек подзаряжаются и сохраняют свой заряд длительное время. Таким образом, требуется обеспечить этот перебор с помощью схем регенерации, что усложняет структуру модуля ОЗУ МПС. Однако размеры ячеек динамического ОЗУ существенно меньше размеров ячеек статического ОЗУ, и потребление мощности значительно ниже. Поэтому емкость БИС динамического ОЗУ гораздо больше, чем емкость БИС статического типа. Однако, недавно стали выпускать БИС, у которых схема регенерации помещена внутри самой БИС.
Н
а
рис. 3.2 показана структура и функциональное
обозначение простейшей БИС статического
типа К565РУ2. На выводы А0...А9
подается комбинация нулей и единиц,
которая соответствует адресу выбранной
ячейки. Структура БИС соответствует
1024х1,т.е. после подачи адреса на единственном
выходе появляется информация в виде
одного бита. Если на входе CS (выбор
микросхемы) будет высокий логический
уровень, то выход БИС будет находиться
в третьем состоянии (состоянии высокого
выходного импеданса), БИС будет как бы
отключена и не будет оказывать никакого
влияния на остальные БИС модуля памяти.
Если CS = 0, то после подачи адреса на
адресные входы, на выходе DO спустя
определенное время (называемое временем
цикла Т) появится информация из данной
ячейки ОЗУ. При необходимости записать
новую информацию в определенную ячейку
нужно после подачи комбинации адреса
подать на вход БИС R/W низкий логический
уровень. Тогда информация с вывода DI
запишется в данную ячейку.