
- •Химические свойства кислот и оснований.
- •Номенклатура и химические свойства солей.
- •Комплексные соединения: номенклатура, состав и химические свойства.
- •Ионообменные реакции с участием осадков и газов.
- •5. Ионообменные реакции с участием слабых электролитов и комплексных ионов.
- •Степень окисления. Окислительно-восстановительные реакции.
- •Гидролиз соли, образованной сильной кислотой и слабым основанием. Степень гидролиза
- •Гидролиз соли, образованной слабой кислотой и сильным основанием.
- •Гидролиз соли, образованной слабой кислотой и слабым основанием.
- •Случаи полного гидролиза.
- •Термохимия. Тепловой эффект реакции. Термохимические уравнения. Закон Гесса.
- •Термохимия. Энтальпия образования реагента. Вычисление теплового эффекта.
- •Химическая термодинамика. Функции процесса и состояния. Энтропия. Энергия Гиббса.
- •Химическая термодинамика. Определение направления протекания реакциипо изменению её энергии Гиббса. Энтальпия образования реагента.
- •Химическое равновесие. Константа равновесия гомогенных и гетерогенных реакций.
- •Химическое равновесие. Принцип ЛеШателье. Смещение равновесия при изменении температуры.
- •Химическое равновесие. Принцип ЛеШателье. Смешение равновесия при изменении общего давления.
- •Химическое равновесие. Принцип ЛеШателье. Смещение равновесия
- •Равновесия в растворах электролитов. Сильные и слабые электролиты.
- •Равновесия в растворах электролитов. Степень иконстанта диссоциации слабого электролита.
- •Равновесия в растворах электролитов. Ионное произведение воды. Водородный показатель.
- •Равновесия в растворах электролитов. Произведение растворимости.
- •Равновесия в растворах электролитов. Константы нестойкости комплексного иона.
- •Химическая кинетика. Зависимость скорости реакции от температуры.
- •Химическая кинетика. Зависимость скорости реакции от концентрации реагирующих веществ. Молекулярность и порядок реакции. Лимитирующая стадия реакции.
- •26 Химическая кинетика применительно к гетерогенным системам.
- •Химическая кинетика. Гомогенный и гетерогенный катализ. Автокатализ.
- •Электрохимия. Уравнение Нернста. Потенциал металлического электрода.
- •Электрохимия. Водородный электрод и ряд напряжений.
- •Электрохимия. Уравнение Нернста.
- •31. Электрохимия. Гальванический элемент.
Комплексные соединения: номенклатура, состав и химические свойства.
Комплексные соединения (лат. complexus — сочетание, обхват) или координационные соединения (лат. co — «вместе» и ordinatio — «упорядочение») — частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.
Комплексные соединения мало диссоциируют в растворе (в отличие от двойных солей). Комплексные соединения могут содержать комплексный малодиссоциирующий анион ([Fe(CN)6]3−), комплексный катион ([Ag(NH3)2]+), либо вообще не диссоциировать на ионы (соединения типа неэлектролитов, например карбонилы металлов). Комплексные соединения разнообразны и многочисленны.
Состав комплексных соединений
Комплексные соединения состоят из внутренней сферы - комплексного иона и внешней сферы - простых катионов или анионов. Центральный атом и лиганды образуют комплекс (внутреннюю сферу), который при записи формулы комплексного соединения заключают в квадратные скобки. Комплексообразователь является центральной частью комплекса. Как правило, комплексообразователь - это положительно заряженный ион металла, иногда комплексообразователем могут быть нейтральные атомы металла или положительно заряженные ионы металлов. В принципе комплексообразователем может выступать любой элемент, но чаще всего это d - металлы. Молекулы и ионы, окружающие комплекс, образуют внешнюю сферу. Лигандами могут быть как нейтральные молекулы (NH3, CO), так и отрицательно заряженные ионы - анионы (OH-, CN-). Лиганды связаны с центральным атомом донорно-акцепторной связью. В комплексном соединении он выступает акцептором, ибо у него на внешней оболочке имеются свободные орбитали, а лиганды - донорами, так как обладают одной или несколькими неподеленными электронными парами. Связь между внешней и внутренней сферами - ионная, поэтому в водных растворах комплексные соединения диссоциируют с образованием ионов. Число связей, образуемых комплексообразователем с лигандами, называется координационным числом. Другими словами, это число лигандов во внутренней сфере.
Координационное число, проявляемое тем или иным комплексообразователем, зависит как от заряда (степени окисления), размеров комплексообразователя, природы лигандов, так и от условий образования комплексов: концентрации исходных веществ, температуры и так далее.
В молекулах комплексных соединений встречаются практически все виды химической связи. Между комплексным ионом и внешней средой - ионная, поэтому в водных растворах комплексные соединения диссоциируют с образованием ионов.
Лиганды связаны с центральным атомом с помощью донорно - акцепторной связи. В молекулах лигандах и в ионе внешней сферы имеет место ковалентная связь.
Номенклатура комплексных соединений
Наибольшее распространение имеет номенклатура, рекомендованная IUPAC. Название комплексного аниона начинается с обозначения состава внутренней сферы: число лигандов обозначается греческими числительными: 2–ди, 3–три, 4–тетра, 5–пента, 6–гекса и т.д., далее следуют названия лигандов, к которым прибавляют соединительную гласную «о»: Cl– – хлоро-, CN– – циано-, OH– – гидроксо- и т.п. Если у комплексообразователя переменная степень окисления, то в скобках римскими цифрами указывают его степень окисления, а его название с суффиксом -ат: Zn – цинкат, Fe – феррат(III), Au – аурат(III). Последним называют катион внешней сферы в родительном падеже.
Примеры:
K3[Fe(CN)6] – гексацианоферрат(III) калия,
K4[Fe(CN)6] – гексацианоферрат(II) калия,
K2[Zn(OH)4] – тетрагидроксоцинкат калия.
Названия соединений, содержащих комплексный катион, строятся из названий анионов внешней среды, после которых указывается число лигандов, дается латинское название лиганда (молекула аммиака NH3 – аммин, молекула воды H2O – аква от латинского названия воды) и русское название элемента-комплексообразователя; римской цифрой в скобках указывается степень окисления элемента-комплексообразователя, если она переменная. Например:
[Cu(NH3)4]SO4 – сульфат тетраамминмеди(II),
[Al(H2O)6]Cl3 – хлорид гексаакваалюминия.
Химические свойства комплексных соединений
1. В растворе комплексные соединения ведут себя как сильные электролиты, т.е. полностью диссоциируют на катионы и анионы:
[Pt(NH3)4]Cl2 = Pt(NH3)4]2+ + 2Cl–,
K2[PtCl4] = 2K+ + [PtCl4]2–.
Диссоциация по такому типу называется первичной.
Вторичная диссоциация связана с удалением лигандов из внутренней сферы комплексного иона:
[PtCl4]2– PtCl3– + Cl–.
Вторичная диссоциация происходит ступенчато: комплексные ионы ([PtCl4]2–) являются слабыми электролитами.
2. При действии сильных кислот происходит разрушение гидроксокомплексов, например:
а) при недостатке кислоты
Na3[Al(OH)6] + 3HCl = 3NaCl + Al(OH)3 + 3H2O;
б) при избытке кислоты
Na3[Al(OH)6] + 6HCl = 3NaCl + AlCl3 + 6H2O.
3. Нагревание (термолиз) всех аммиакатов приводит к их разложению, например:
[Cu(NH3)4]SO4 CuSO4 + 4NH3.