
Основные формулы комбинаторики |
|
|
. |
Комбинаторика изучает количества комбинаций, подчиненных определенным условиям, которые можно составить из элементов, безразлично какой природы, заданного конечного множества. При непосредственном вычислении вероятностей часто используют формулы комбинаторики. Приведем наиболее употребительные из них. Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок Pn = n!,
где n! = 1 * 2 * 3 ... n. Заметим, что удобно рассматривать 0!, полагая, по определению, 0! = 1. Размещениями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются либо составом элементов, либо их порядком. Число всех возможных размещений Amn = n (n - 1)(n - 2) ... (n - m + 1).
Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний С mn = n! / (m! (n - m)!).
примеры перестановок, размещений, сочетаний Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством Amn = PmC mn.
З а м е ч а н и е. Выше предполагалось, что все n элементов различны. Если же некоторые элементы повторяются, то в этом случае комбинации с повторениями вычисляют по другим формулам. Например, если среди n элементов есть n1 элементов одного вида, n2 элементов другого вида и т.д., то число перестановок с повторениями Pn (n1, n2, ...) = n! / (n1! n2! ... ),
где n1 + n2 + ... = n. При решении задач комбинаторики используют следующие правила: П р а в и л о с у м м ы. Если некоторый объект А может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А, либо В можно m + n способами. П р а в и л о п р о и з в е д е н и я. Если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А, В) в указанном порядке может быть выбрана mn способами. В разделе "Примеры" рассматриваются примеры непосредственного вычисления вероятностей |
§ 1. Основные формулы комбинаторики
В данном разделе мы займёмся подсчётом числа «шансов». О числе шансов говорят, когда возможно несколько результатов какого-либо действия (извлечение карты из колоды, подбрасывание кубика или монетки). Число шансов — это число способов проделать это действие или, что то же самое, число возможных результатов этого действия.
Теорема о перемножении шансов
Пусть одно действие можно проделать пятью способами, а другое — двумя. Каким числом способов можно проделать пару этих действий?
Теорема
1. Пусть
множество
состоит
из
элементов:
,
а множество
—
из
элементов:
.
Тогда можно образовать ровно
пар
,
взяв первый элемент из множества
,
а второй — из множества
.
Замечание 1. Можно сформулировать утверждение теоремы 1 так: если первый элемент можно выбрать способами, а второй элемент — способами, то пару элементов можно выбрать способами.
Доказательство. С
элементом
мы
можем образовать
пар:
.
Столько же пар можно составить с
элементом
,
столько же — с элементом
и с любым
другим из
элементов
множества
.
Т.е. всего возможно
пар,
в которых первый элемент выбран
из множества
,
а второй — из множества
.
QED
Упражнение 1. С помощью теоремы 1 доказать, что:
а)
при подбрасывании трёх монет возможно 2·2·2=8 различных результатов;
б)
бросая дважды игральную кость, получим 6·6=36 различных результатов;
в)
трёхзначных чисел бывает 9·10·10=900;
г)
трёхзначных чисел, все цифры которых различны, существует 9·9·8;
д)
чётных трёхзначных чисел возможно 9·10·5.
Урны и шарики
Есть
урна (ящик), содержащая
пронумерованных
объектов (шаров). Мы выбираем из этой
урны
шаров;
результатом выбора является набор
из
шаров.
Нас интересует, сколькими способами
можно выбрать
шаров
из
,
или сколько различных результатов может
получиться. На этот вопрос нельзя дать
однозначный ответ, пока мы не определимся:
а) с тем, как организован выбор (можно
ли шары возвращать в урну), и б) с тем,
что понимается под различными результатами
выбора.
Рассмотрим следующие возможные способы выбора.
1.
Выбор с возвращением: каждый вынутый шар возвращается в урну, каждый следующий шар выбирается из полной урны. В полученном наборе из номеров шаров могут встречаться одни и те же номера.
2.
Выбор без возвращения: вынутые шары в урну не возвращаются, и в полученном наборе не могут встречаться одни и те же номера.
Условимся, какие результаты выбора (наборы из номеров шаров) мы будем считать различными. Есть ровно две возможности.
1.
Выбор с учётом порядка: два набора номеров шаров считаются различными, если они отличаются составом или порядком номеров. Так, при выборе трёх шаров из урны, содержащей 5 шаров, наборы (1, 5, 2), (2, 5, 1) и (4, 4, 5) различны, если порядок учитывается.
2.
Выбор без учёта порядка: два набора номеров шаров считаются различными, если они отличаются составом. Наборы, отличающиеся лишь порядком следования номеров, считаются одинаковыми.
Так, наборы (1, 5, 2) и (2, 5, 1) не различаются и образуют один и тот же результат выбора, если порядок не учитывается.
Подсчитаем, сколько возможно различных результатов для каждой из четырёх схем выбора (выбор с возвращением или без, и в каждом из этих случаев — с учётом порядка или без).
Упражнение 2. Перечислить все возможные результаты в каждой из четырёх схем при выборе двух шаров из четырёх. Например, при выборе с возвращением и без учёта порядка: (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4).