- •Чаще всего работаем с молярной теплоёмкостью!
- •21)Работа при изменении объема. Первое начало термодинамики. Формула Майера. Применение первого начала термодинамики к изопроцессам идеального газа.
- •Изотермический процесс
- •23)Применение первого начала термодинамики к адиабатическому процессу. Уравнение Пуассона.
- •24) Содержание второго и третьего начала термодинамики
- •25)Распределение молекул во внешнем потенциальном поле сил. Барометрическая формула. Распределение Больцмана.
- •26)Распределение молекул идеального газа по скоростям. Распределение Максвелла. Вычисление средней арифметической, средней квадратичной и наиболее вероятной скоростей.
- •27) Среднее число столкновений молекул идеального газа в единицу времени. Средняя длина свободного пробега молекул идеального газа.
- •28) Явления переноса. Формальное уравнение явлений переноса. Диффузия, внутренне трение, теплопроводность. Физическое истолкование и единицы измерения коэффициентов переноса.
- •31)Электрическое поле. Электрический заряд и его свойства. Закон Кулона.
- •32)Вектор напряженности электрического поля. Поле точечного заряда (шара). Принцип суперпозиции полей. Графическое изображение электрических полей.
- •33)Поток вектора напряженности электрического поля. Теорема Гаусса в электростатике и ее применение для расчета электрических полей. Поле бесконечно заряженной плоскости.
- •34)Теорема Гаусса в электростатике и её применение для расчета поля, создаваемого двумя параллельными бесконечными однородно заряженными плоскостями, поле линейно распределённого заряда.
- •35)Теорема Гаусса в электростатике и её применение для расчета полей, поле заряженной сферы и заряженного шара
- •2. Электростатическое поле шара.
- •36)Работа по перемещению заряда в электрическом поле. Потенциал электрического поля. Разность потенциалов. Потенциал поля точечного заряда (шара).
- •37)Потенциал поля, созданного системой зарядов. Связь между напряженностью и потенциалом. Градиент потенциала. Эквипотенциальные поверхности.
- •40)Энергия электростатического поля. Объемная плотность энергии.
- •41) Электрический диполь. Напряжённость и потенциал, поля диполя.
- •42)Поведение диполя в однородном и неоднородном электрическом поле.
- •44)Сегнетоэлектрики. Диэлектрический гистерезис. Пьезоэффект. Применение диэлектриков в технике.
- •45)Электрический ток. Условия поддержания тока в цепи. Сила тока и плотность тока. Сторонние силы. Эдс источника тока
- •46)Закон Ома для однородного участка цепи. Сопротивление проводника. Зависимость сопротивления от температуры. Явление сверхпроводимости.
- •47)Закон Ома в дифференциальной форме. Закон Ома для неоднородного участка цепи. Закон Ома для полной цепи.
- •48)Разветвленные цепи. Правила Кирхгофа и их применение к расчету цепей.
- •49)Работа и мощность тока. Тепловое действие тока. Закон Джоуля-Ленца.
33)Поток вектора напряженности электрического поля. Теорема Гаусса в электростатике и ее применение для расчета электрических полей. Поле бесконечно заряженной плоскости.
Поток
вектора напряжённости электрического
поля. Представим
себе точечный положительный заряд Q,
находящийся в центре сферической
поверхности 1 радиусом r.
В точках этой поверхности напряжённость
электрического поля
Так
как площадь
поверхности
сферы S =
4
r2,
то её произведение на напряжённость
электрического поля не зависит ни от
чего, кроме заряда:
(5.4)
поэтому характеризует электрическое поле в целом. Эта величина получила название потока вектора напряжённости электрического поля.
Поток напряжённости через концентрические сферические поверхности 1 и 2 одинаков. Так как он характеризует поле заряда в целом, нужно, чтобы он оставался тем же и для произвольной замкнутой поверхности 3. Но для неё вектор напряжённости уже не является нормалью к элементу поверхности. Поэтому для определения потока вектора E через элемент поверхности вместо площади этого элемента следует брать площадь его проекции на плоскость, перпендикулярную вектору E. Условимся поток считать положительным, если вектор напряжённости выходит из замкнутой поверхности, и отрицательным, если он входит в неё. Если заряд находится вне замкнутой поверхности 4, то поток напряжённости через неё равен нулю. Дело в том, что входящий внутрь области поток по модулю равен выходящему.
Теорема Гаусса. Мысленно переместим заряд из центра сферической поверхности в любую точку внутри неё. Очевидно, поток вектора напряжённости электрического поля от этого не изменится, т.к., по самому определению, он один и тот же для любой замкнутой поверхности, окружающей заряд. Разместим внутри этой поверхности не один, а несколько в общем случае различных зарядов. По принципу суперпозиции электрические поля этих зарядов не влияют друг на друга, значит, потоки, созданные каждым зарядом по отдельности, остаются неизменными. Результирующий поток, очевидно, равен сумме потоков от всех зарядов.
Это и есть теорема Гаусса: поток вектора напряжённости через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, делённой на электрическую постоянную:
(5.5)
Если алгебраическая сумма зарядов внутри замкнутой поверхности равна нулю, то поток напряжённости электрического поля через эту поверхность также равен нулю. Это понятно, поскольку положительные заряды внутри поверхности создают положительный поток, а отрицательные – равный ему по модулю отрицательный.
Применение теоремы Гаусса для расчета полей:
1 случай) Поле бесконечной однозаряжённой плоскости:
34)Теорема Гаусса в электростатике и её применение для расчета поля, создаваемого двумя параллельными бесконечными однородно заряженными плоскостями, поле линейно распределённого заряда.
Как
видно из рисунка 13.13, напряженность поля
между двумя бесконечными параллельными
плоскостями, имеющими поверхностные
плотности зарядов
и
,
равны сумме напряженностей полей,
создаваемых пластинами, т.е.
Таким
образом,
Вне
пластины векторы
от
каждой из них направлены в противоположные
стороны и взаимно уничтожаются. Поэтому
напряженность поля в пространстве,
окружающем пластины, будет равна нулю
Е=0.
