
- •Казань 2009
- •Определение нормативных начальных параметров воздуха для проектирования скв
- •Выбор нормированных параметров воздуха в помещении
- •Выбор нормированных параметров наружного воздуха
- •Расчет тепловлажностных балансов помещения
- •Расчет теплового баланса помещения в теплый период года
- •Лекция 2 Расчет теплового баланса помещения в холодный период года Теплопотери через ограждения
- •Выделение влаги в помещении
- •Расчет тепловлажностного отношения помещения, п, кг/кг
- •Системы отопления производственных и жилых помещений
- •Требования к системам отопления
- •Классификация систем отопления
- •Характеристики теплоносителей
- •Сравнение основных систем отопления
- •Области применения различных систем отопления
- •Лекция 3. Системы водяного отопления
- •Классификация систем водяного отопления
- •Системы парового отопления
- •Воздушное отопление
- •Лекция 4. Распределение воздуха в помещении
- •Панельно-лучистое отопление
- •Промышленная вентиляция. Классификация систем вентиляции
- •Воздухообмен в производственном помещении
- •Аэрация
- •Оборудование систем вентиляции Вентиляторы.
- •Лекция 5. Обеспыливающие устройства.
- •Калориферы.
- •Системы кондиционирования воздуха (скв)
- •Классификация скв
- •Лекция 6. Состояния воздуха и процессы на «I, d» – диаграмме влажного воздуха
- •Расчеты скв, использующие адиабатическое увлажнение воздуха
- •Расчет процессов в скв с использованием адиабатического испарения воды в оросительной камере
- •1, 2, 3, 4 - Обозначения те же, что на рис. 5.1; 5 – воздуховод - байпас.
- •Лекция 7. Выбор схемы скв и центрального кондиционера
- •Центральные кондиционеры
- •Системы холодоснабжения скв
- •Схемы холодоснабжения скв от естественных источников холода
- •Схемы холодоснабжения скв от льда как источника холода
- •Использование артезианской и грунтовых вод
- •Схемы холодоснабжения скв от холодильных машин (хм)
- •Рекомендуемая литература
Использование артезианской и грунтовых вод
Возможность использования артезианских и грунтовых вод в качестве источника холода для СКВ определяется водоносностью почвенных горизонтов, температурой воды, ее химическим и бактериальном составом, жесткостью. Из перечисленных свойств температура является основным фактором применимости в СКВ. Артезианская вода должна быть тем холодней, чем более низкая температура воздуха должна поддерживаться в помещении и чем большей является нагрузка на СКВ по скрытой теплоте (от влагопритоков).
При использовании в качестве воздухоохладителя форсуночной камеры, где вода непосредственно контактирует с воздухом, артезианская вода должна быть питьевого качества. Поэтому необходимо бурить глубокие скважины несмотря на то, что чем глубже скважина, тем она дороже и тем выше температура получаемой воды. Вторым недостатком схем с использованием артезианской воды в форсуночной камере является большой расход воды на каждый киловатт холодопроизводительности, так как подогрев воды в ней небольшой (2…4 оС).
Удешевление системы может быть достигнуто за счет использования воздухоохладителя поверхностного типа вместо форсуночной камеры. В них вода может подогреваться на 8…10 оС и более. Поскольку в поверхностном воздухоохладителе нет непосредственного контакта воздуха с водой, то вода необязательно должна быть питьевого качества, лишь бы температура была низкой. Это позволяет использовать в СКВ грунтовые воды, залегающие на небольшой глубине, воды горных рек и т.п.
Для крупных СКВ при наличии артезианских скважин с водой, имеющей недостаточно низкую температуру, рекомендуют использовать комбинированные системы, где дополнительно используются холодильные установки. Эти системы можно подразделить на две основные группы: системы с предварительным охлаждением воздуха и системы с предварительным охлаждением воды.
На рисунке 13.5а показана схема с предварительным охлаждением воздуха, на рисунке 13.5б – схема с предварительным охлаждением воды.
В системах с предварительным охлаждением воздуха артезианская вода используется в воздухоохладителе первой ступени 2, а во второй ступени используется воздухоохладитель, питаемый искусственно охлажденной в испарителе 8 холодильной установки 6 водой. Эту систему применяют в тех случаях. Когда располагают небольшим количеством артезианской воды достаточно низкой температуры. Для того, чтобы как можно полнее использовать охлаждающую способность воды, после первой ступени охлаждения вода поступает в промежуточный бак 3, куда также сливают большую часть отепленной воды после конденсатора 9. В результате смешения обоих потоков артезианская вода нагревается на 20…25 оС, а конденсаторная вода охлаждается на 4…5 оС, после чего смесь из бака насосом 7 направляется в конденсатор холодильной машины.
Если имеется достаточно большое количество артезианской воды с сравнительно высокой температурой, то применяют схему с предварительным охлаждением воды (рисунок 13.5б). В данной схеме производительность холодильной установки не зависит от холодонагрузки СКВ, а определяется только тем, на сколько градусов необходимо охладить артезианскую воду для должного осушения и охлаждения воздуха. В обеих схемах артезианскую воду под должным давлением сбрасывают в диффузионную скважину.
Артезианская вода, используемая в комбинированных схемах, не должна быть слишком жесткой, так как при жесткости свыше 20 ед. происходит засорение трубок конденсаторов осаждающимися солями, что вызывает повышение температуры конденсации.
Рис. 13.5
1 – артезианская скважина; 2 – воздухоохладитель предварительного
охлаждения; 3 – бак артезианской воды; 4 – основной воздухоохла-
дитель; 5,7 – центробежный насос; 6 – холодильная машина; 8 – испа-
ритель холодильной машины; 9 – конденсатор холодильной машины;
10 – диффузионная скважина; 11 – канализационный коллектор.