
- •Основные понятия.
- •Основные понятия.
- •Первый закон Ньютона (закон инерции Галилея -Ньютона).
- •Второй закон Ньютона.
- •Третий закон Ньютона.
- •§ 1.2. Способы задания движения точки
- •2. Криволинейное движение
- •6. Поступательное и вращательное движения абсолютно твердого тела
- •Первый закон Ньютона (закон инерции Галилея -Ньютона).
- •Второй закон Ньютона.
- •Третий закон Ньютона.
- •Вид преобразований при коллинеарных осях[4]
- •Теорема об изменении кинетической энергии материальной точки.
- •14. Механическая система. Силы внешние и внутренние.
- •Теорема об изменении кинетической энергии системы материальных точек.
- •Сила вязкого трения
- •16. Сила упругости
- •Виды деформации твердых тел Деформация растяжения
- •Деформация сжатия
- •Деформация сдвига
- •Деформация изгиба
- •Деформация кручения
- •Пластическая и упругая деформация
- •18. Работа и потенциальная энергия
- •Абсолютно неупругий удар
- •Динамика абсолютно твердого тела
- •§1 Момент инерции. Теорема Штейнера
- •27. Движение тела переменной массы
- •Механические колебания и волны
- •30. Графический метод сложения колебаний. Векторная диаграмма. Методом вращающегося вектора амплитуды.
- •Различные формы траектории суммы колебаний. Фигуры Лиссажу.
- •31. Сложение взаимно перпендикулярных колебаний.
- •Характеристики затухающих колебаний
- •33. Вынужденные механические колебания
- •Механическая волна
- •Основные характеристики волны
- •Уравнение бегущей волны
- •Продольная и поперечная волны
- •36. Энергетические характеристики волн
- •Энергия волны
- •Уравнение стоячей волны
- •Сущность явления
- •[Править]Математическое описание
- •[Править]Релятивистский эффект Доплера
- •Движение с постоянной скоростью
- •Строгое определение
- •[Править]Объяснение
- •Преобразования Лоренца в математике
- •[Править]Определение
- •[Править]Общие свойства
- •41. Относительность одновременности
- •[Править]Сокращение линейных размеров
- •[Править]Эффект Доплера
- •[Править]Аберрация
- •42. Релятивистская динамика [править]Энергия и импульс
- •[Править]Уравнения движения
- •[Править]Преобразования энергии и импульса
- •44. Дифференциальная форма
- •Уравнение неразрывности
- •45. Закон Бернулли
- •46. Вязкость. Ламинарные и турбулентные режимы течения
- •49. Основное уравнение мкт газа
- •[Править]Идеальные газы
- •Г.А.Белуха, школа № 4, г. Ливны, Орловская обл. Работа газа в термодинамике Методические рекомендации по изучению темы, 10-й класс
- •[Править]Определение
- •51. 3. Первое начало термодинамики
- •4.4 Теплоемкость
- •Физический смысл адиабатического процесса
- •[Править]Работа газа
- •Уравнение Пуассона для идеального газа [править]Адиабата Пуассона
- •[Править]Вывод уравнения
- •[Править]Показатель адиабаты
- •Политропный процесс
- •[Править]Показатель политропы
- •55. 3.9. Закон возрастания энтропии
- •Кпд тепловой машины Карно
- •Пра́вило фаз (или правило фаз Гиббса) — соотношение, связывающее число веществ (компонентов), фаз и степеней свободы в гетерогенной системе. Уравнение Гиббса
- •Условия фазового равновесия
- •[Править]Элементарный вывод
- •58. Капиллярные явления
Сила вязкого трения
Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h:
Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости.
Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.
Тре́ние поко́я, трение сцепления — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.
Максимальная
сила трения покоя в простейшем
приближении:
,
где k0 — коэффициент
трения покоя,
N — сила нормальной
реакции опоры.
Если силы трения действуют между различными соприкасающимися телами
(например, между телом и плоскостью, по которой оно движется или находится в
покое), то такое трение называется внешним. Чисто внешнее трение является
сухим трением, оно возникает в том случае, если между телами отсутствует слой
смазки.
Силы сухого трения возникают не только при скольжении одного тела по
поверхности другого, но и при попытке вызвать такое скольжение. Существует
три вида внешнего трения: трение покоя, трение скольжения и трение качения.
Трение называется вязким, если оно существует между поверхностью
твердого тела и окружающей его жидкой или газообразной средой, в которой оно
движется, а также трение между различными слоями такой среды. Иногда вязкое
трение называют жидким трением. Поскольку силы вязкого трения возникают
между различными частями одного и того же тела (например, в жидкостях и
газах), скорости слоев которых непрерывно меняются от слоя к слою, то такое
трение является внутренним трением.
Внешнее трение – возникает при относительном перемещении двух соприкасающихся тел. Внутреннее трение – между частями одного и того же сплошного тела.
16. Сила упругости
|
Начало формы Конец формы |
Сила, возникающая в результате деформации тела и направленная в сторону, противоположную перемещениям частиц тела при деформации, называется силой упругости.
Поэтому для проекции силы упругости на ось ОХ, направленную по вектору перемещения, выполняется равенство
,
(12.1)
где
—
удлинение стержня.
Связь между проекцией силы упругости и удлинением тела была установлена экспериментально английским ученым Робертом Гуком (1635—1703) и поэтому называется законом Гука.
Сила упругости, возникающая при деформации тела, пропорциональна удлинению тела и направлена в сторону, противоположную направлению перемещений частиц тела при деформации.
Коэффициент пропорциональности k в законе Гука называется жесткостью тела. Жесткость тела зависит от формы и размеров тела и от материала, из которого оно изготовлено. Жесткость в СИ выражается в ньютонах на метр (Н/м).
Выясним природу сил упругости. В состав атомов и молекул входят частицы, обладающие электрическими зарядами. Атомы в твердом теле расположены таким образом, что силы отталкивания одноименных электрических зарядов и притяжения разноименных зарядов уравновешивают друг друга. При изменениях взаимных положений атомов или молекул в твердом теле в результате его деформации электрические силы стремятся возвратить атомы в первоначальное положение. Так при деформации возникает сила упругости.
Силы взаимодействия электрических зарядов называются электромагнитными силами. Так как силы упругости обусловлены взаимодействиями зарядов, по своей природе они являются электромагнитными силами.
Зако́н Гу́ка — уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёнымРобертом Гуком (Хуком) (англ. Robert Hooke)[1]. Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.
В словесной форме закон звучит следующим образом:
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:
Здесь
—
сила, которой растягивают (сжимают)
стержень,
—
абсолютное удлинение (сжатие) стержня,
а
— коэффициент
упругости (или
жёсткости).
Коэффициент
упругости зависит как от свойств
материала, так и от размеров стержня.
Можно выделить зависимость от размеров
стержня (площади поперечного сечения
и
длины
)
явно, записав коэффициент упругости
как
Величина
называется модулем
упругости первого рода или модулем
Юнга и
является механической характеристикой
материала.
Если ввести относительное удлинение
и нормальное напряжение в поперечном сечении
то закон Гука в относительных единицах запишется как
В такой форме он справедлив для любых малых объёмов материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме
Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.