
- •Основные понятия.
- •Основные понятия.
- •Первый закон Ньютона (закон инерции Галилея -Ньютона).
- •Второй закон Ньютона.
- •Третий закон Ньютона.
- •§ 1.2. Способы задания движения точки
- •2. Криволинейное движение
- •6. Поступательное и вращательное движения абсолютно твердого тела
- •Первый закон Ньютона (закон инерции Галилея -Ньютона).
- •Второй закон Ньютона.
- •Третий закон Ньютона.
- •Вид преобразований при коллинеарных осях[4]
- •Теорема об изменении кинетической энергии материальной точки.
- •14. Механическая система. Силы внешние и внутренние.
- •Теорема об изменении кинетической энергии системы материальных точек.
- •Сила вязкого трения
- •16. Сила упругости
- •Виды деформации твердых тел Деформация растяжения
- •Деформация сжатия
- •Деформация сдвига
- •Деформация изгиба
- •Деформация кручения
- •Пластическая и упругая деформация
- •18. Работа и потенциальная энергия
- •Абсолютно неупругий удар
- •Динамика абсолютно твердого тела
- •§1 Момент инерции. Теорема Штейнера
- •27. Движение тела переменной массы
- •Механические колебания и волны
- •30. Графический метод сложения колебаний. Векторная диаграмма. Методом вращающегося вектора амплитуды.
- •Различные формы траектории суммы колебаний. Фигуры Лиссажу.
- •31. Сложение взаимно перпендикулярных колебаний.
- •Характеристики затухающих колебаний
- •33. Вынужденные механические колебания
- •Механическая волна
- •Основные характеристики волны
- •Уравнение бегущей волны
- •Продольная и поперечная волны
- •36. Энергетические характеристики волн
- •Энергия волны
- •Уравнение стоячей волны
- •Сущность явления
- •[Править]Математическое описание
- •[Править]Релятивистский эффект Доплера
- •Движение с постоянной скоростью
- •Строгое определение
- •[Править]Объяснение
- •Преобразования Лоренца в математике
- •[Править]Определение
- •[Править]Общие свойства
- •41. Относительность одновременности
- •[Править]Сокращение линейных размеров
- •[Править]Эффект Доплера
- •[Править]Аберрация
- •42. Релятивистская динамика [править]Энергия и импульс
- •[Править]Уравнения движения
- •[Править]Преобразования энергии и импульса
- •44. Дифференциальная форма
- •Уравнение неразрывности
- •45. Закон Бернулли
- •46. Вязкость. Ламинарные и турбулентные режимы течения
- •49. Основное уравнение мкт газа
- •[Править]Идеальные газы
- •Г.А.Белуха, школа № 4, г. Ливны, Орловская обл. Работа газа в термодинамике Методические рекомендации по изучению темы, 10-й класс
- •[Править]Определение
- •51. 3. Первое начало термодинамики
- •4.4 Теплоемкость
- •Физический смысл адиабатического процесса
- •[Править]Работа газа
- •Уравнение Пуассона для идеального газа [править]Адиабата Пуассона
- •[Править]Вывод уравнения
- •[Править]Показатель адиабаты
- •Политропный процесс
- •[Править]Показатель политропы
- •55. 3.9. Закон возрастания энтропии
- •Кпд тепловой машины Карно
- •Пра́вило фаз (или правило фаз Гиббса) — соотношение, связывающее число веществ (компонентов), фаз и степеней свободы в гетерогенной системе. Уравнение Гиббса
- •Условия фазового равновесия
- •[Править]Элементарный вывод
- •58. Капиллярные явления
Теорема об изменении кинетической энергии материальной точки.
Для доказательства теоремы запишем дифференциальное уравнение движения точки в виде mdV / dt = F. Умножая обе части уравнения скалярно на вектор элементарного действительного перемещения точки dr и учитывая, что dr / dt = V, имеем
|
(1) |
Зная, что F - равнодействующая сил, приложенных к точке, обозначим δA скалярное произведение в правой части и назовем его элементарной работой сил, приложенных к точке:
|
(2) |
Находя дифференциал от mV2 / 2, имеем
Подставляя последнее выражение и выражение (2) в уравнение (1), получаем математическую запись теоремы в дифференциальной форме:
|
(3) |
Половину произведения массы точки на квадрат ее скорости под знаком дифференциала в левой части уравнения (3) называют кинетической энергией точки.
Это замечание позволяет по математической записи сформулировать теорему об изменении кинетической энергии материальной точки в дифференциальной форме: дифференциал от кинетической энергии материальной точки равен элементарной работе сил, приложенных к точке.
Отметим, что кинетическая энергия - это еще одна, но уже скалярная, мера движения материальной точки, что дает ей определенные преимущества перед векторными мерами движения - количеством движения и моментом количества движения. В системе СИ единицей измерения кинетической энергии является джоуль, 1 Дж = кг·(м2/с2) = (кг·м/c2)·м = 1 Н·м.
Предположим, что при переходе точки из начального положения M0 в конечное (или текущее) положение M ее скорость изменилась от начального значения V0 до текущего (или конечного) значения V, и при этих предположениях проинтегрируем выражение (3). Тогда
Интеграл в правой части этого выражения обозначим A и назовем полной работой или просто работой сил, приложенных к материальной точке:
|
(4) |
Учитывая введенное обозначение, получаем математическую запись теоремы об изменении кинетической энергии материальной точки в интегральной форме:
mV2 / 2 - mV02 / 2 = A |
(5) |
то есть: изменение кинетической энергии материальной точки при ее переходе из начального положения в текущее (или конечное) положение равна работе сил, приложенных к точке, совершенной при этом переходе.
Теорема в интегральной форме в основном применяется, когда интеграл в правой части можно взять и вычислить полную работу сил. Тогда можно найти соотношение между перемещением и скоростью материальной точки. Теорема в дифференциальной форме удобна для составления дифференциальных уравнений движения материальной точки.
При практическом применении теоремы вычисление кинетической энергии точки обычно не вызывает трудностей, нужно только помнить о том, что ее нужно вычислять в абсолютном движении. Основной интерес и трудности представляют выражение элементарной работы и вычисление работы.
Ур-е моментов.Предположим, что точка О неподвижна. В случае одной материальной точки, дифференцируя (3), получаем
.
При
неподвижной точке О вектор
,
равный
,
параллелен
и
поэтому
.
Кроме того
.
Таким
образом
.
(5)
Это уравнение моментов для одной материальной точки. Распространим его на систему материальных точек, для чего запишем уравнение (5) для каждой материальной точки механической системы, понимая под М момент всех действующих на нее сил, как внутренних так и внешних.
Работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела. Это утверждение называют теоремой о кинетической энергии.
Так как изменение кинетической энергии равно работе силы (19.3), кинетическая энергия выражается в тех же единицах, что и работа, т. е. в джоулях.
Если
начальная скорость движения тела
массой m равна
нулю и тело увеличивает свою скорость
до значения
,
то работа силы равна конечному значению
кинетической энергии тела:
.
(19.4)
Кинетическая энергия тела массой m, движущегося со скоростью , равна работе, которую должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.