Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
dlya_shpor.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.08 Mб
Скачать

Г.А.Белуха, школа № 4, г. Ливны, Орловская обл. Работа газа в термодинамике Методические рекомендации по изучению темы, 10-й класс

При изучении работы газа в термодинамике учащиеся неизбежно сталкиваются с трудностями, обусловленными слабыми навыками вычисления работы переменной силы. Поэтому к восприятию этой темы необходимо готовиться, начиная уже с изучения работы в механике и решая с этой целью задачи на работу переменной силы путём суммирования элементарных работ на всём пути с помощью интегрирования.

Например, при вычислениях работы силы Архимеда, силы упругости, силы всемирного тяготения и т.п. надо учиться суммировать элементарные величины с помощью простейших дифференциальных соотношений типа dA = Fds. Опыт показывает, что старшеклассники легко справляются с этой задачей, – дугу траектории, на которой сила увеличивается или уменьшается, нужно разбить на такие промежутки ds, на которых силу F можно считать постоянной величиной, а затем, зная зависимость F = F(s), подставить её под знак интеграла. Например, 

Работа этих сил вычисляется с помощью простейшего табличного интеграла 

Такая методика облегчает адаптацию будущих студентов к восприятию курса физики в вузе и устраняет методические сложности, связанные с умением находить работу переменной силы в термодинамике и др.

После того как учащиеся усвоили, что такое внутренняя энергия и как найти её изменение, целесообразно дать обобщающую схему:

Усвоив, что работа – это один из способов изменения внутренней энергии, десятиклассники легко рассчитывают работу газа в изобарном процессе. На данном этапе необходимо подчеркнуть, что сила давления газа на всём пути не меняется, и по третьему закону Ньютона |F2| = |F1|, знак работы находим из формулы A = Fs cos . Если   = 0°, то A > 0, если   = 180°, то A < 0. На графике зависимости р(V) работа численно равна площади под графиком.

Пусть газ расширяется или сжимается изотермически. Например, газ сжимается под поршнем, давление изменяется, и в любой момент времени 

При бесконечно малом перемещении поршня на dl мы получим бесконечно малое изменение объёма dV, а давление р можно считать постоянным. По аналогии с нахождением механической работы переменной силы, составим простейшее дифференциальное соотношение dA = pdV, тогда   и, зная зависимость р (V), запишем    Это табличный интеграл типа    Работа газа в этом случае отрицательна, т.к.   = 180°:

т.к. V2 < V1.

Полученную формулу можно переписать, используя соотношение 

Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основныхтермодинамических величин.

Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

Единица измерения в Международной системе единиц (СИ)Джоуль.

[Править]Определение

Рассмотрим систему, состоящую из двух тел   и  . Предположим, что тело   заключено почти полностью в жёсткую адиабатическую оболочку, так что оно не способно совершать макроскопическую работу, а обмениваться теплом (то есть энергией) посредством микроскопических процессов может лишь с телом  . Предположим, что тело   также заключено в адиабатическую оболочку почти полностью, так что для него возможен теплообмен лишь с  , но не будем предполагать, что оболочка жёсткая. Количеством теплоты, сообщённой телу   в некотором процессе, будем называть величину  , где   — изменение внутренней энергии тела  . Согласно закону сохранения энергии,

где   — макроскопическая работа внешних сил над телом  . Если учесть, что

где   — работа, совершённая телом  , то по закону сохранения энергии можно придать форму первого начала термодинамики:

Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела   и способа теплообмена между телами. Заметим, что для определения количества теплоты необходимо пробное тело, в противном случае первое начало теряет смысл содержательного закона и превращается в определение количества теплоты (весьма бесполезное в таком виде). При определении количества теплоты независимо от   и   первое начало становится содержательным законом, допускающим экспериментальную проверку.

Отметим, что, как и совершённая работа, количество переданной теплоты зависит от конкретного процесса, совершённого над телом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]