Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика распечатка.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
424.62 Кб
Скачать

11.Применение датчиков

Применение микроэлектронных приборов в медицине позволяет не только уменьшить размеры приборов и аппаратов, но и создать приборы и датчики к ним, очень малых размеров. Такие малые датчики могут безопасно вводиться внутрь полостей различных органов, и даже вживляться в ткани организма. В связи с этим появились новые диагностические методы. Они называются эндорадиометрией. Миниатюрный электрический манометр применяется, для измерения давления в полостях сердца. Он укрепляется на конце сердечного катетера.силиконовое сопротивление, соединенное с мембраной, воспринимающей внешнее давление служит в нем датчиком. новый метод эдорадиометрии разработан для исследования желудочно-кишечного тракта. Исследование температуры, давления и кислотности среды производится на протяжении всего тракта с помощью эндорадиозонда, имеющего форму пилюли, которую исследуемый пациент проглатывает.микрорадиогенератор находится в пилюле. Он содержит источник питания, транзистор, детали контуров и на открытом конце - датчик, воздействующий на частоту генерируемых колебаний, излучаемых в виде электромагнитных волн. Термистор служит датчиком температуры в эндорадиозонде, датчиком давления - катушка индуктивности колебательного контура генератора, связанного с мембраной, датчиком кислотности среды - два платиновых электрода.щелочной микроаккумулятор является источником полупроводниковые датчики (термисторы) для определения температуры тела или его участков применяются в медицинской практике Термометр, основанный на зависимости сопротивления проводника от температуры называют электрическим термометром сопротивления. Он имеет преимущества перед ртутным термометром в связи с его малой тепловой инерцией. Электрические термометры с металлическим проводником, сопротивление которого при нагревании возрастает, имеют относительно

12.Природа рентгеновских лучей, их место в шкале электромагнитных волн.

Уже после первых опытов Рентген твердо установил, что Х-лучи отличаются от катодных, они не несут заряда и не отклоняются магнитным полем, но возбуждаются катодными лучами. Они невидимы для глаза, действуют на магнитное поле и т.д. Таким образом, возникает и распространяется короткий электромагнитный импульс, т.е. электромагнитная волна. Рентгеновские лучи, являющиеся электромагнитной волной длиной волны от 80 нм до 0, 0001 нм, в шкале электромагнитных волн со стороны длинных волн граничит с ультрафиолетовыми лучами оптического диапазона, а со стороны коротких волн – с γ лучами.

Источники рентгеновского излучения.Источников рентгеновского излучения можно разделить на две группы: естественные и искусственные.

Естественные источники излученияЕстественные источники рентгеновского излучения, генераторы рентгеновского излучения, находятся вне Земли. Один из них - Солнце. Его рентгеновская радиация настолько огромна, что способна в считанные минуты уничтожить все живое на Земле. Но на наше счастье, рентгеновский квант по дороге к Земле бесчисленное множество раз поглощается и испускается частицами атмосферы, в итоге он приходит на поверхность Земли «обессиленным».Существуют "рентгеновские" звезды, хотя они достаточно редки. К 1977 году было обнаружено приблизительно 200 рентгеновских звезд. Пульсары - невидимые в обычный телескоп "маяки", которые регулярно, нередко с удивительной правильностью через равные промежутки времени изменяют интенсивность своего излучения, радиоволнового или рентгеновского. Пульсар - это нейтронная звезда, которая действует не в одиночку, а вдвоем с напарником, подобным нашему Солнцу только во много раз больше. Будучи сравнительно с ним карлицей, но зато сверхплотной и весьма массивной, она непрестанно перетягивает на себя вещество своего компаньона - раскаленного газообразного шара. При этом выделяется огромное количество лучистой энергии в рентгеновском диапазоне.

Искусственные источники излученияНаиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор: подогревный катод 1, раскаленная вольфрамовая спираль, испускает электроны 4, анод 2, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение 3 под углом к оси трубки. Анод изготовлен из теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из туго¬плавких материалов, имеющих большой порядковый номер атома в таблице Д.И. Мен¬делеева, например из вольфрама. В от¬дельных случаях анод специально охлаж¬дают водой или маслом.Диагностические рентгеновские трубки имеют рабочее напряжение от 100 до 120 кВ.Терапевтические рентгеновские трубки имеют более высокое рабочее напряжение (160 - 200 кВ) и работают при малых силах токаВ медицине используется рентгеновское излучение с длиной волны порядка от 1,0 до 0,006 нм.