
- •1.Основные свойства и функции биомембран
- •2,Транспорт веществ через биомембрану.
- •3. Оптическая микроскопия.
- •5.Потенциал покоя
- •6.Потенциал действия
- •7. Свойства жидкостей
- •8.Поверхностное натяжение.
- •9.Структурная схема съема , передачи и регистрации медико-биологической информации. Электроды и датчики в медицине.
- •10.Виды датчиков:
- •11.Применение датчиков
- •12.Природа рентгеновских лучей, их место в шкале электромагнитных волн.
- •14. Виды рентгеновского излучения.
- •15. Процессы, происходящие при взаимодействие рентгеновского излучения с веществом
- •20. Виды радиоактивного распада.Α- распад. Формула α- распада.
- •21. Ионизирующее радиоактивное излучение и его биологическое действие.
- •22. Поглощенная и экспозиционная доза. Мощность дозы. Единицы измерения.
- •23.Сердце.Биофизические свойства сердца(проводимость, возбудимость и т.Д.)
- •24.Ритм сердца. Показатели сердечной деятельности. Тоны сердца.
- •25.Электрическая активность клеток миокарда
- •26.Электрокардиограмма. Основные отведения.
- •29.Электроэнцефалография.
- •30.Основные ритмы ээг.
- •31.Методика записи электроэнцефалограмм.
- •32. Методы изучения ээг. Магнитоэнцефалография.
- •33. Люминесценция и ее виды.
- •34.Индуцированное излучение. Лазер.
- •35.Механизмы действия лазерного излучения на биологические ткани.
- •61.Уравнение Бернулли.Статическое и динамическое давления.
- •62.Вязкость жидкости.Ламинарный и турбулентный характер течения жидкости.
- •63.Течение жидкости по горизонтальной трубе,Закон Пуазейля.
- •64.Определение скорости кровотока.
- •65.Физические основы реографии.
- •66.Гемодинамика.Линейная и объемная скорость кровотока.
- •67Физическая модель сосудистой системы.Непрерывность кровотока.
- •68.Физические основы клинического метода измерения давления крови.
- •69.Систолическое и диастолическое давления, пульсовое давление крови.
- •70.Работа сердца.
- •71.Систолический и минутный объем кровотока
- •72.Биофизические особенности аорты.Распространение пульсовой волны по стенке артерий. Венный пульс.
- •73.Интроскопия
- •Эхозондирование
- •74.Компьютерный томограф.
- •75. Магнитно-резонансная томография.
- •77.Воздействие электромагнитных полей.
- •78.Тепловой действие высокочастотных колебаний. Диатермия ,дарсонвализация, увч-терапия, индуктометрия.
- •79. Физиотерапия. Ультразвуковая терапия. Микроволновая терапия.
- •80.Ампуль - терапия. Микротоковая терапия. Магнитотерапия. Лазерная терапия.
- •82. Лекарственный электрофорез
- •83. Гальванизация
- •84. Электробезопасность.
- •85. Первичные стадии фотобиологических процессов.
- •86. Фотохимические реакции.
- •87. Хемилюминесценция и ее диагностическое значение.
- •88. Действие ультрафиолетового излучения на белки и нуклеиновые кислоты.
- •89. Моделирование.Основние этапы моделирования
- •4. Создание модели, ее исследование.
- •90.Моделирование. Классификация моделей.
- •Классифиция моделей:
7. Свойства жидкостей
Вещество в жидком состоянии сохраняет свой объем, но принимает форму сосуда. Если сила тяжести капли уравновешивается силой Архимеда, на каплю действуют только молекулярные силы, то она принимает форму шара. В состоянии невесомости жидкость принимает шарообразную форму и вне сосуда, что было проверено космонавтами. Сохранение объема у жидкости доказывает, что между ее молекулами действуют силы притяжения. Следовательно, расстояния между молекулами жидкости должны быть меньше радиуса молекулярного действия. Если вокруг какой-либо молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с этой молекулой. Эти силы взаимодействия удерживают молекулу жидкости около ее временного положения равновесия примерно в течение 10-12 – 10-10 сек., после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра. Молекулы жидкости между переходами совершают колебательное движение около временного положения равновесия. Время между переходами молекулы из одного положения в другое называется временем оседлой жизни. Это время зависит от вида жидкости и от температуры. При нагревании жидкости среднее время оседлой жизни молекул уменьшается.
Жидкость обладает текучестью, вызванной тем, что время действия внешней силы обычно во много раз больше времени релаксации, поэтому жидкость течет и принимает форму сосуда, в котором она находится. В небольшом объеме жидкости наблюдается упорядоченное расположение ее молекул, а в большом объеме оно оказывается хаотическим. В этом смысле говорят, что в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называют квазикристаллическим (кристаллоподобным). В некоторых жидкостях с удлиненной формой молекул возможна единообразная ориентация их по всему объему. Такие жидкости называются жидкими кристаллами, а свойства их отличаются от обычных жидкостей.
При достаточно сильном нагревании время оседлой жизни становится очень маленьким и ближний порядок в жидкости практически исчезает.
Жидкость может обнаруживать механические свойства, присущие твердому телу. Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться; камень можно бросить так, что он при ударе о поверхность воды отскакивает от нее, и лишь совершив несколько скачков, тонет в воде. Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.
При кратковременном действии силы на струю жидкости последняя обнаруживает хрупкость.
Сжимаемость жидкости больше, чем у этих же веществ в твердом состоянии. Например, при увеличении давления на 1 атм объем воды уменьшается на 50 миллионных долей.
Разрывы внутри жидкости, в которой нет посторонних веществ, например воздуха, могут получаться только при интенсивном воздействии на жидкость, например при распространении в жидкости ультразвуковых волн. Такого рода пустоты внутри жидкости долго существовать не могут и резко захлопываются, т.е. исчезают. Это явление называют кавитацией (от греческого «кавитас» -полость).