
- •1.Основные свойства и функции биомембран
- •2,Транспорт веществ через биомембрану.
- •3. Оптическая микроскопия.
- •5.Потенциал покоя
- •6.Потенциал действия
- •7. Свойства жидкостей
- •8.Поверхностное натяжение.
- •9.Структурная схема съема , передачи и регистрации медико-биологической информации. Электроды и датчики в медицине.
- •10.Виды датчиков:
- •11.Применение датчиков
- •12.Природа рентгеновских лучей, их место в шкале электромагнитных волн.
- •14. Виды рентгеновского излучения.
- •15. Процессы, происходящие при взаимодействие рентгеновского излучения с веществом
- •20. Виды радиоактивного распада.Α- распад. Формула α- распада.
- •21. Ионизирующее радиоактивное излучение и его биологическое действие.
- •22. Поглощенная и экспозиционная доза. Мощность дозы. Единицы измерения.
- •23.Сердце.Биофизические свойства сердца(проводимость, возбудимость и т.Д.)
- •24.Ритм сердца. Показатели сердечной деятельности. Тоны сердца.
- •25.Электрическая активность клеток миокарда
- •26.Электрокардиограмма. Основные отведения.
- •29.Электроэнцефалография.
- •30.Основные ритмы ээг.
- •31.Методика записи электроэнцефалограмм.
- •32. Методы изучения ээг. Магнитоэнцефалография.
- •33. Люминесценция и ее виды.
- •34.Индуцированное излучение. Лазер.
- •35.Механизмы действия лазерного излучения на биологические ткани.
- •61.Уравнение Бернулли.Статическое и динамическое давления.
- •62.Вязкость жидкости.Ламинарный и турбулентный характер течения жидкости.
- •63.Течение жидкости по горизонтальной трубе,Закон Пуазейля.
- •64.Определение скорости кровотока.
- •65.Физические основы реографии.
- •66.Гемодинамика.Линейная и объемная скорость кровотока.
- •67Физическая модель сосудистой системы.Непрерывность кровотока.
- •68.Физические основы клинического метода измерения давления крови.
- •69.Систолическое и диастолическое давления, пульсовое давление крови.
- •70.Работа сердца.
- •71.Систолический и минутный объем кровотока
- •72.Биофизические особенности аорты.Распространение пульсовой волны по стенке артерий. Венный пульс.
- •73.Интроскопия
- •Эхозондирование
- •74.Компьютерный томограф.
- •75. Магнитно-резонансная томография.
- •77.Воздействие электромагнитных полей.
- •78.Тепловой действие высокочастотных колебаний. Диатермия ,дарсонвализация, увч-терапия, индуктометрия.
- •79. Физиотерапия. Ультразвуковая терапия. Микроволновая терапия.
- •80.Ампуль - терапия. Микротоковая терапия. Магнитотерапия. Лазерная терапия.
- •82. Лекарственный электрофорез
- •83. Гальванизация
- •84. Электробезопасность.
- •85. Первичные стадии фотобиологических процессов.
- •86. Фотохимические реакции.
- •87. Хемилюминесценция и ее диагностическое значение.
- •88. Действие ультрафиолетового излучения на белки и нуклеиновые кислоты.
- •89. Моделирование.Основние этапы моделирования
- •4. Создание модели, ее исследование.
- •90.Моделирование. Классификация моделей.
- •Классифиция моделей:
25.Электрическая активность клеток миокарда
В естественных условиях клетки миокарда находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентрационным градиентом ионов К+.Потенциалы действия (ПД), зарегистрированные в разных отделах сердца при помощи внутриклеточных микроэлектродов, существенно различаются по форме, амплитуде и длительности Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию — фаза 1; медленную реполяризацию, так называемое плато — фаза 2; быструю реполяризацию — фаза 3; фазу покоя — фаза 4.Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного потенциала (с -90 до +30 мВ).Деполяризация мембраны вызывает активацию медленных натрий-кальциевых каналов. Поток ионов Са2+ внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато натриевые каналы инактивируются и клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит активация калиевых каналов. Выходящий из клетки поток ионов К+ обеспечивает быструю реполяризацию мембраны (фаза 3), во время которой кальциевые каналы закрываются, что ускоряет процесс реполяризации (поскольку падает входящий кальциевый ток, деполяризующий мембрану).Реполяризация мембраны вызывает постепенное закрывание калиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается -это период так называемой относительной рефрактерности.В клетках рабочего миокарда (предсердия, желудочки) мембранный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяризация (фаза 4), при достижении критического уровня которой (примерно —50 мВ) возникает новый ПД (см. рис. 2, Б). На этом механизме основана авторитмическая активность указанных сердечных клеток. Биологическая активность этих клеток имеет и другие важные особенности: 1) малую крутизну подъема ПД; 2) медленную реполяризацию (фаза 2), плавно переходящую в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня —60 мВ (вместо —90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической деполяризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диастолической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше.Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и медленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+, но и для ионов Na+. Быстрые натриевые каналы не принимают участия в генерации ПД этих клеток. Скорость развития медленной диастолической деполяризации регулируется автономной (вегетативной) нервной системой.Способность клеток миокарда в течение жизни человека находиться в состоянии непрерывной ритмической активности обеспечивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, поглощаются эндоплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность миокардиальных клеток.