
- •Тема 1. Вероятностные пространства 30
- •Тема 2. Основные вероятностные схемы испытаний 60
- •Тема 3. Случайные величины 87
- •Тема 4. Математическая статистика 140
- •Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- •Особенности изучения теории вероятностей и математической статистики менеджером
- •Краткие сведения
- •Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- •Основные понятия теории вероятностей
- •Случайные события
- •Понятие случайного эксперимента
- •Пространство элементарных событий
- •Наступление события, благоприятствующие исходы
- •Совместные (совместимые), несовместные (несовместимые) события
- •Достоверное и невозможное события
- •Алгебра событий Операции над событиями (сумма, разность, произведение)
- •Свойства операций над событиями
- •Алгебра и сигма-алгебра событий
- •Общее определение вероятности
- •Классическое определение вероятности события. Случаи равновероятных исходов
- •Статистическое определение вероятности события. Случаи неравновероятных исходов
- •Геометрические вероятности
- •Аксиоматическое построение теории вероятностей
- •, Т.Е. Вероятность достоверного события равна единице;
- •Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- •Полная группа событий
- •Условная вероятность
- •Формула умножения вероятностей
- •Формула сложения вероятностей
- •Независимость событий
- •Простейшие свойства вероятностей
- •Свойства условных вероятностей
- •Формула полной вероятности. Формула Байеса
- •Контрольные вопросы к теме №1
- •Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- •Классическая вероятностная схема
- •Правила суммы и произведения
- •Схемы выбора. Основные понятия комбинаторики
- •Выбор без возвращения, с учетом порядка
- •Выбор без возвращения, без учета порядка
- •Выбор с возвращением и с учетом порядка
- •Выбор с возвращением и без учета порядка
- •Урновая схема
- •Наивероятнейшее число наступления событий в схеме Бернулли
- •Предельные теоремы для схемы Бернулли
- •Локальная теорема Муавра–Лапласа
- •Интегральная теорема Муавра – Лапласа
- •Теорема Пуассона
- •Понятие потока событий
- •Полиномиальная схема
- •Понятие цепи Маркова
- •Однородные цепи Маркова
- •Равенство Маркова
- •Предельные вероятности
- •Контрольные вопросы к теме №2
- •Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- •Непрерывные и дискретные случайные величины
- •Закон распределения случайной величины
- •Функция распределения случайной величины и ее свойства
- •Свойства функции распределения
- •Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- •Свойства математического ожидания
- •Дисперсия случайной величины и ее свойства
- •Среднеквадратическое отклонение
- •Начальные и центральные моменты
- •Основные примеры распределений дискретной случайной величины
- •Биномиальное распределение, его математическое ожидание, дисперсия
- •Распределение Пуассона
- •Геометрическое распределение
- •Непрерывные случайные величины Функция и плотность распределения вероятностей
- •Числовые характеристики непрерывных случайных величин
- •Основные примеры распределений непрерывной случайной величины Равномерное распределение
- •Показательное распределение
- •Нормальное распределение
- •Свойства функции Гаусса
- •Центральная предельная теорема
- •Вероятность попадания нормальной случайной величины в заданный интервал
- •Функция Лапласа и ее свойства
- •Вычисление вероятности заданного отклонения. Правило «трех сигм»
- •Лекция 4. Многомерные случайные величины
- •Закон распределения вероятностей двумерной случайной величины
- •Совместная функция распределения двумерной случайной величины
- •Свойства совместной функции распределения двумерной случайной величины
- •Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- •Свойства двумерной плотности вероятности
- •Условное математическое ожидание
- •Независимые случайные величины
- •Числовые характеристики системы двух случайных величин
- •Корреляционный момент
- •Коэффициент корреляции
- •Свойства коэффициента корреляции
- •Линейная регрессия. Метод наименьших квадратов
- •Распределение 2
- •Распределение Стьюдента
- •Распределение Фишера
- •Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- •Контрольные вопросы к теме №3
- •Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- •Выборочный метод и его основные понятия
- •Способы отбора
- •Вариационный ряд для дискретных и непрерывных случайных величин
- •Полигон и гистограмма
- •Эмпирическая функция распределения и ее свойства
- •Свойства эмпирической функции распределения
- •Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- •Выборочные среднее и дисперсия
- •Надежность и доверительный интервал
- •Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- •Проверка статистических гипотез
- •Статистический критерий
- •Критическая область. Область принятия гипотезы. Критические точки
- •Критерий согласия Пирсона о виде распределения
- •Элементы теории корреляции
- •Выборочные уравнения регрессии
- •Линейная регрессия
- •Множественная линейная регрессия
- •Нелинейная регрессия
- •Логарифмическая модель
- •Обратная модель
- •Степенная модель
- •Показательная модель
- •Цепи Маркова Цепи Маркова с дискретным временем
- •Однородные цепи Маркова
- •Переходные вероятности. Матрица перехода
- •Равенство Маркова
- •Цепи Маркова с непрерывным временем
- •Уравнения Колмогорова
- •Финальные вероятности состояний системы
- •Предельные вероятности
- •Контрольные вопросы к теме №4
- •Экзаменационные вопросы
- •Литература
- •Теория вероятностей и математическая статистика
- •Технический редактор т.В. Жибуль
- •220007, Г. Минск, ул. Московская, 17.
Выборочные среднее и дисперсия
Пусть для изучения генеральной совокупности относительно количественного признака X извлечена выборка объема n.
Выборочным
средним
называют среднее арифметическое значение
признака выборочной совокупности. Если
все значения
признака
выборки объема n различны,
то:
.
Если
значения признака
имеют
частоты
соответственно, причем
,
то:
.
Выборочное среднее, найденное по данным одной выборки, равно определенному числу. При извлечении других выборок того же объема выборочное среднее будет меняться от выборки к выборке. То есть выборочное среднее можно рассматривать, как случайную величину, и можно говорить о его распределениях (теоретическом и эмпирическом) и о числовых характеристиках этого распределения (например, о математическом ожидании и дисперсии).
Для
охарактеризования рассеяния наблюдаемых
значений количественного признака
выборки вокруг среднего значения
вводится выборочная дисперсия.
Выборочной дисперсией
называют среднее арифметическое
квадратов отклонения наблюдаемых
значений признака от их среднего значения
.
Если все значения
признака
выборки объема n различны,
то:
.
Если значения признака имеют частоты соответственно, причем , то:
.
Аналогично выборочным среднему и дисперсии определяются генеральные среднее и дисперсия, характеризующие генеральную совокупность в целом. Для расчета этих характеристик достаточно в вышеприведенных соотношениях заменить объем выборки n на объем генеральной совокупности N.
Фундаментальное
значение для практики имеет нахождение
среднего и дисперсии признака генеральной
совокупности по соответствующим
известным выборочным параметрам. Можно
показать, что выборочное среднее
является несмещенной состоятельной
оценкой генерального среднего. В то же
время, несмещенной состоятельной оценкой
генеральной дисперсии оказывается не
выборочная дисперсия
,
а так называемая «исправленная»
выборочная дисперсия, равная
.
Таким образом, в качестве оценок генерального среднего и дисперсии в математической статистике принимают выборочное среднее и исправленную выборочную дисперсию.
Надежность и доверительный интервал
До сих пор мы рассматривали точечные оценки, т.е. такие оценки, которые определяются одним числом. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. В связи с этим при небольшом объеме выборки пользуются интервальными оценками.
Интервальной
называют оценку, определяющуюся двумя
числами – концами интервала. Пусть
найденная по данным выборки статистическая
характеристика
служит оценкой неизвестного параметра
.
Очевидно,
тем точнее определяет параметр
,
чем меньше абсолютная величина разности
.
Другими словами, если
и
,
то чем меньше , тем
точнее оценка. Таким образом, положительное
число характеризует
точность оценки.
Статистические методы не позволяют утверждать, что оценка удовлетворяет неравенству , можно говорить лишь о вероятности, с которой это неравенство осуществляется.
Надежностью (доверительной вероятностью) оценки по называют вероятность , с которой осуществляется неравенство . Обычно надежность оценки задается заранее, причем, в качестве берут число, близкое к единице – как правило, 0,95; 0,99 или 0,999.
Пусть вероятность того, что равна :
.
Заменим неравенство
равносильным ему двойным неравенством
.
Это соотношение следует понимать так:
вероятность того, что интервал
заключает в себе (покрывает) неизвестный
параметр , равна
.
Таким образом, доверительным называют интервал , который покрывает неизвестный параметр с заданной надежностью .