
- •Определители и правило крамера
- •Определители второго порядка
- •Определители третьего порядка
- •Правило Крамера
- •Определители n-го порядка
- •Основные свойства определителей
- •Метод элементарных преобразований
- •*Формула полного разложения определителя
- •*Методы вычисления определителей
- •A) Метод приведения к треугольному виду
- •B) Метод рекуррентных соотношений
- •Дополнение 1 к главе 2. Доказательства некоторых свойств определителей
- •Дополнение 2 к главе 2. Элементарные сведения из теории подстановок c) Перестановки
- •D) Подстановки
- •E) Транспозиции
- •F) Циклы
- •Дополнение 3 к главе 2. Определение определителя через его элементы
- •Дополнение 4 к главе 2. Теорема Лапласа
- •Вопросы для самопроверки
- •Упражнения и задачи
Метод элементарных преобразований
Теорема 2.2. Определитель треугольной матрицы равен произведению элементов главной диагонали:
Элементарными преобразованиями матрицы называются следующие преобразования: 1) умножение строки (столбца) на число, не равное нулю; 2) прибавление одной строки (столбца) к другой; 3) перестановка двух строк (столбцов).
Метод элементарных преобразований заключается в том, чтобы при помощи элементарных преобразований, учитывая свойства определителей, привести матрицу к треугольному виду.
Пример 2.5. Вычислить определитель при помощи элементарных преобразований, приведя их к треугольному виду:
Пример 2.6. Вычислить определитель:
.
Решение. Упростим данный определитель, а затем вычислим его:
.
Пример
2.7. Вычислить
определитель
.
Решение. Способ 1.При помощи элементарных преобразований матрицы, учитывая свойства определителей, будем получать в какой-либо строке или столбце нули, а затем будем разлагать полученный определитель по этой строке или столбцу:
.
Способ 2.При помощи элементарных преобразований матрицы, учитывая свойства определителей, приведем матрицу к треугольному виду:
.
Вычисление определителей при помощи элементарных преобразований, путем приведения его к треугольному виду, является одним из самых распространенных методов. Это связано с тем, что он является основным методом при реализации вычислений определителей на ЭВМ. Точнее он является одной из модификаций метода Гаусса, который обычно используется при решении систем линейных уравнений.
Пример 2.8*. Вычислить определитель методом Гаусса:
Решение. Рассмотрим первый столбец и выберем в нем ту строку, которая содержит 1. Если единиц нет, то нужно эту единицу создать при помощи элементарных преобразований: переставляя строки или столбцы, складывая или вычитая их друг из друга, умножая или деля их на какое-либо число (учитывая при этом, конечно свойства определителей). Возьмем за основу вторую строку и получим при помощи ее нули в первом столбце:
После этого на первую строку больше внимания не обращаем. Рассмотрим 2-й столбец. Здесь единиц нет, однако ее можно легко создать, например, если поменять местами 2-й и 3-й столбцы, или если от второй строки отнять четвертую. Далее повторяем предыдущую операцию, т.е. создаем нули во втором столбце:
Сейчас рассматриваем 3-й столбец, в котором уже имеется единица, при этом на первые две строки не обращаем внимание. Переставляем третью и четвертую строки и при помощи отмеченной единицы получаем нули в четвертой и пятой строках третьего столбца:
Осталось рассмотреть четвертый столбец. Вынесем общий множитель четвертой строки, равный 2, за знак определителя и поменяем местами две последние стоки. Далее воспользуемся тем, что 99 кратно 33:
В результате, получилась треугольная матрица. Для того чтобы вычислить определитель, осталось только перемножить элементы матрицы, находящиеся на главной диагонали. Таким образом, получаем ответ: –2(–1)(–1)1334 = –264.