Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТОЭ ответы(1-62).doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
2.96 Mб
Скачать

57. Понятие о мостовых схемах.

мостовые схемы работают как пара двухкомпонентных делителей напряжения подсоединённых параллельно к источнику напряжения, индикатор нулевого сигнала включён в диагональ моста для определения "баланса" при нулевом сигнале

Сбалансированный мост показывает "ноль", или минимальное значение, на индикаторе.

Любой из четырёх резисторов на верхнем рисунке может быть резистором с неизвестным сопротивлением, и его значение может быть определено из пропорции с другими тремя резисторами, которые "калиброваны" или их сопротивления известны с высокой точностью. Когда мост находится в условиях баланса (индикатор показывает нулевой сигнал), отношение определяется как:

Условия баланса.

Одним из преимуществ использования мостовой схемы для измерения сопротивлений является то, что напряжение источника питания не влияет на измерения. Практически, чем выше напряжение питания, тем легче обнаружить дисбаланс между четыремя резисторами с помощью индикатора нулевого сигнала, и таким образом повышается чувствительность схемы. Большее напряжение питания ведёт к увеличению точности измерений. Однако из-за уменьшения или увеличения напряжения питания не вносится фундаментальных ошибок в отличии от других схем измерения сопротивлений.

Импедансные мосты работают так же, только уравнение баланса определяется комплексными числами, и амплитуда, и фаза сигналов на диагонали моста должны быть равные, что бы детектор показал "нуль". Детектор нуля, конечно, должен быть устройством, способным обнаруживать очень слабый сигнал переменного тока. Для этого часто используют осциллограф, хотя здесь мог бы использоваться очень чувствительный электромеханический прибор и даже наушники, если частота сигнала лежит в звуковом диапазоне.

58. Область применения трёхфазных устройств. Трёхфазный генератор. Принцип действия

Трехфазный генератор. Системой трехфазных цепей называют такую совокупность электрических цепей, в которой токоприемники получают питание от общего трехфазного генератора. Трехфазные токоприемники.

Трехфазный генератор служит источником питания как однофазных, так и трехфазных электрических устройств. Однофазные токоприемники, как известно, имеют два внешних зажима. К ним относятся, например, осветительные лампы, различные бытовые приборы, электросварочные аппараты, индукционные печи, электродвигатели с однофазной обмоткой.

Трехфазные устройства в общем случае имеют шесть внешних зажимов. Каждое такое устройство состоит из трех, обычно одинаковых, электрических цепей, которые называются фазами. Примерами трехфазных токоприемников могут служить электрические дуговые печи с тремя электродами или электродвигатели с трехфазной обмоткой.

Трехфазным называется такой генератор, который имеет обмотку, состоящую из трех частей. Каждая часть этой обмотки называется фазой. Поэтому эти генераторы и получили название трехфазных.

Для уяснения принципа действия трехфазного генератора обратимся к модели, схематически изображенной на рисунке 64. Модель состоит из статора, изготовленного в виде стального кольца, и ротора - постоянного магнита. На кольце статора расположена трехфазная обмотка с одинаковым числом витков в каждой фазе. Фазы обмотки смещены в пространстве одна относительно другой на угол 120°.

Представим себе, что ротор модели генератора приведен во вращение с постоянной скоростью против движения часовой стрелки. Тогда, вследствие непрерывного движения полюсов постоянного магнита относительно проводников обмотки статора, в каждой ее фазе будет наводиться э.д.с.

П рименяя правило правой руки, можно убедиться, что э.д.с., наводимая в фазе обмотки северным полюсом вращающегося магнита, будет действовать в одном направлении, а наводимая южным полюсом - в другом. Следовательно, э.д.с. фазы генератора будет переменной.

Крайние точки (зажимы) каждой фазы генератора всегда размечают: одну крайнюю точку фазы называют началом, а другую - концом. Начала фаз обозначают латинскими буквами A, B, C, а концы их соответственно - X, Y, Z. Наименования «начало» и «конец» фазы дают, руководствуясь следующим правилом: положительная э. д. с. генератора действует в направлении от конца фазы к ее началу.

Э.д.с. генератора условимся считать положительной, если она наведена северным полюсом вращающегося магнита. Тогда разметка зажимов генератора для случая вращения его ротора против движения часовой стрелки должна быть такой, как показано на рисунке 64.

При постоянной скорости вращения полюсов ротора амплитуда и частота э.д.с., создаваемых в фазах обмотки статора, сохраняются неизменными. Однако в каждое мгновение величина и направление действия э.д.с. одной из фаз отличаются от величины и направления действия э.д.с. двух других фаз. Это объясняется пространственным смещением фаз. Все явления во второй фазе повторяют явления в первой фазе, но с опозданием. Говорят, что э. д. с. второй фазы отстает во времени от э.д.с. первой фазы. Поскольку за один оборот двухполюсного ротора генератора происходит полный цикл изменения э.д.с., то время T одного оборота является периодом изменения э.д.с. Очевидно, что для поворота ротора на 120° необходимо время, равное одной трети периода (T/3).

Следовательно, все стадии изменения э.д.с. второй фазы наступают позже соответствующих стадий изменения э.д.с. первой фазы на одну треть периода. Такое же отставание в периодическом изменении э.д.с. наблюдается в третьей фазе по отношению ко второй. Само собой разумеется, что по отношению к первой фазе периодические изменения э.д.с. третьей фазы совершаются с опозданием на две трети периода (2/3 T).

Путем придания соответствующей формы полюсам магнитов можно добиться изменения э.д.с. во времени по закону, близкому к синусоидальному.

Следовательно, если изменение э.д.с. первой фазы генератора происходит по закону синуса

e1 = Eмsinωt ,

то закон изменения э.д.с. второй фазы может быть записан формулой

e2 = Eм sinω (t − T/3) ,

а третьей - формулой

e3 = Eм sinω (t − 2/3 T) ,