
- •Кинематические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин времени.
- •Зависимость кинематических величин времени
- •Кинематические характеристики вращательного движения твердого тела
- •Законы сохранения импульса и и момента импульса
- •Закон Сохранения Импульса
- •Гармонические колебания и их характеристики. Квазиупругая сила
- •Скорость и ускорение при гармонических колебаниях.
- •Квазиупругая сила
- •Энергия гармонических колебаний
- •Простейшие колебательные системы пружинный, физический и математический маятники.
- •Сложение одинаково направленных колебаний
- •Сложение взаимно перпендикулярных колебаний
- •Затухающие колебания. Логарифмический декремент затухания
- •Вынужденные колебания. Резонанс
- •Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния м-к
- •Распределение максвелла. Скорости молекул
- •Барометрическая формула. Распределение Больцмана Барометрическая формула — определяет зависимость давления или плотности газа от высоты в поле тяжести
- •Распределение Больцмана — концентрация молекул газа под воздействием гравитационного поля в зависити от высоты
- •Средняя длина свободного пробега молекул. Среднее число столкновений. Понятие о вакууме.
- •Явление переноса. Диффузия, внутреннее течение, теплопроводность.
- •Внутренняя энергия идеального газа. Закон равномерного распределения по степеням свободы.
- •Первое начало в применении к изопроцессам.
- •Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •Круговые процессы (циклы). Обратимый и необратимый циклы. Кпд цикла.
- •Цикл Карно и его кпд.
- •[Править]Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •Энтропия. Термодинамическое толкование энтропии. Изменение (энтропии?) в обратимых изопроцессах.
- •Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда. Поле диполя.
- •Теорема Гаусса для вектора напряженности электрического поля. Применение теоремы Гаусса. Поле бесконечной равномерно заряженной плоскости и системы плоскостей, шара и бесконечной нити.!!!!!!!!!!
- •Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал.
- •Связь между напряженностью и потенциалом. Эквипотенциальные поверхности.
- •Виды диэлектриков. Поляризация диэлектриков.
- •Напряженность электрического поля в диэлектрике. Вектор электрической индукции. Теорема Гаусса для этого вектора.
- •Энергия электрического поля. Объемная плотность энергии.
- •Объемная плотность энергии электростатического поля
- •Магнитное поле и его характеристики.
- •Закон Био-Савара-Лапласа и его применение. Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.
- •Циркуляция вектора индукции магнитного поля.
- •Закон Ампера. Закон Ампера — Если провод, по которому течет ток, находится в магнитном поле, то на каждый из носителей тока действует сила Ампера
- •Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •Работа по перемещению проводника с током.
- •Ток замыкания и размыкания.
- •Энергия магнитного поля.
- •Магнитный и механический момент электрона. Гиромагнитное соотношение.
- •Атом во внешнем поле. Диа- и парамагнетизм.
- •Вектор намагничивания. Магнитное поле в веществе.
- •Ферромагнетики и их свойства.
- •Основы теории электромагнетизма Максвелла.
- •Электромагнитные волны.
- •Интерференция света. Условия интерференции.
- •Опыт наблюдения интерференции (опыт Юнга, плоская пластина, кольца Ньютона)
- •Дифракция света. Принцип Гюгенса-Френеля.
- •Дифракция Френеля (на отверстии и диске).
- •Дифракция Фраунгофера (на щели и решетке).
- •Естественный и поляризованный свет. Закон Малюса.
- •Поляризация при отражении и преломлении. Закон Брюстера.
- •Двойное лучепреломление. Поляризационные приборы.
- •Тепловое излучение и его характеристики. Закон Кирхгофа.
- •Излучение черного тела. Законы Стефана-Больцмана и Вина. Излучение чёрного тела и квантовая гипотеза.
- •Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •Фотоэффект. Формула Эйнштейна для фотоэффекта.
- •Эффект Комптона. Эффект Комптона — называют процесс рассеивания коротковолнового (рентгеновского) излучения на свободных электронах вещества, который сопровождается увеличением длины волны
- •Волны де Бройля.
- •Соотношение неопределенностей Гейзенберга.
- •Уравнение Шредингера. Физический смысл ψ -функции.
- •Частица в потенциальной яме.
- •Атом водорода в классической механике. Постулаты Бора.
- •Атом водорода в квантовой механике. Квантовые числа. Принцип Паули.
- •Металлы, диэлектрики, полупроводники с точки зрения зонной теории.
Распределение максвелла. Скорости молекул
Молекулы газа при своем движении постоянно сталкиваются. Скорость каждой молекулы при столкновении изменяется. Она может возрастать и убывать. Однако среднеквадратичная скорость остается неизменной. Это объясняется тем, что в газе, находящемся при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Скорость отдельной молекулы с течением времени может меняться, однако доля молекул со скоростями в некотором интервале скоростей остается неизменной.
Нельзя ставить вопрос: сколько молекул обладает определенной скоростью. Дело в том, что, хоть число молекул очень велико в любом даже малом объеме, но количество значений скорости сколь угодно велико (как чисел в последовательном ряде), и может случиться, что ни одна молекула не обладает заданной скоростью.
|

Основываясь
на опыте Штерна, можно ожидать, что
наибольшее число молекул будут иметь
какую-то среднюю скорость, а доля быстрых
и медленных молекул не очень велика.
Необходимые измерения показали, что
доля молекул
,
отнесенная к интервалу скорости Δv,
т.е.
,
имеет вид, показанный на рис. 3.3. Максвелл
в 1859 г. теоретически на основании теории
вероятности определил эту функцию. С
тех пор она называется функцией
распределения молекул по скоростям или
законом Максвелла.
Аналитически она выражается формулой
|
|
где m – масса молекулы, k – постоянная Больцмана.
Установление этой зависимости позволило определить кроме уже известной среднеквадратичной скорости еще две характерные скорости – среднюю и наиболее вероятную. Средняя скорость – это сумма скоростей всех молекул, деленная на общее число всех молекул в единице объема.
Средняя скорость, подсчитанная на основании закона Максвелла, выражается формулой
|
|
или
|
|
Наиболее вероятная скорость – это скорость, вблизи которой на единичный интервал скоростей приходится наибольшее число молекул. Она рассчитывается по формуле:
|
|
Сопоставляя все три скорости:
1) наиболее
вероятную
,
2) среднюю
,
3)
среднюю квадратичную
,
– видим, что наименьшей из них является
наиболее вероятная, а наибольшей –
средняя квадратичная. Относительное
число быстрых и медленных молекул мало
(рис. 3.4).
|
|
В Формуле мы использовали :
—
Функция
Распределение Максвелла
—
Число молекул
в единице объёма
—
Масса молекулы
—
Абсолютная
температура системы
— Постоянная
Больцмана
—
Абсолютная
скорость частицы