
- •Кинематические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин времени.
- •Зависимость кинематических величин времени
- •Кинематические характеристики вращательного движения твердого тела
- •Законы сохранения импульса и и момента импульса
- •Закон Сохранения Импульса
- •Гармонические колебания и их характеристики. Квазиупругая сила
- •Скорость и ускорение при гармонических колебаниях.
- •Квазиупругая сила
- •Энергия гармонических колебаний
- •Простейшие колебательные системы пружинный, физический и математический маятники.
- •Сложение одинаково направленных колебаний
- •Сложение взаимно перпендикулярных колебаний
- •Затухающие колебания. Логарифмический декремент затухания
- •Вынужденные колебания. Резонанс
- •Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния м-к
- •Распределение максвелла. Скорости молекул
- •Барометрическая формула. Распределение Больцмана Барометрическая формула — определяет зависимость давления или плотности газа от высоты в поле тяжести
- •Распределение Больцмана — концентрация молекул газа под воздействием гравитационного поля в зависити от высоты
- •Средняя длина свободного пробега молекул. Среднее число столкновений. Понятие о вакууме.
- •Явление переноса. Диффузия, внутреннее течение, теплопроводность.
- •Внутренняя энергия идеального газа. Закон равномерного распределения по степеням свободы.
- •Первое начало в применении к изопроцессам.
- •Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •Круговые процессы (циклы). Обратимый и необратимый циклы. Кпд цикла.
- •Цикл Карно и его кпд.
- •[Править]Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •Энтропия. Термодинамическое толкование энтропии. Изменение (энтропии?) в обратимых изопроцессах.
- •Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда. Поле диполя.
- •Теорема Гаусса для вектора напряженности электрического поля. Применение теоремы Гаусса. Поле бесконечной равномерно заряженной плоскости и системы плоскостей, шара и бесконечной нити.!!!!!!!!!!
- •Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал.
- •Связь между напряженностью и потенциалом. Эквипотенциальные поверхности.
- •Виды диэлектриков. Поляризация диэлектриков.
- •Напряженность электрического поля в диэлектрике. Вектор электрической индукции. Теорема Гаусса для этого вектора.
- •Энергия электрического поля. Объемная плотность энергии.
- •Объемная плотность энергии электростатического поля
- •Магнитное поле и его характеристики.
- •Закон Био-Савара-Лапласа и его применение. Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.
- •Циркуляция вектора индукции магнитного поля.
- •Закон Ампера. Закон Ампера — Если провод, по которому течет ток, находится в магнитном поле, то на каждый из носителей тока действует сила Ампера
- •Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •Работа по перемещению проводника с током.
- •Ток замыкания и размыкания.
- •Энергия магнитного поля.
- •Магнитный и механический момент электрона. Гиромагнитное соотношение.
- •Атом во внешнем поле. Диа- и парамагнетизм.
- •Вектор намагничивания. Магнитное поле в веществе.
- •Ферромагнетики и их свойства.
- •Основы теории электромагнетизма Максвелла.
- •Электромагнитные волны.
- •Интерференция света. Условия интерференции.
- •Опыт наблюдения интерференции (опыт Юнга, плоская пластина, кольца Ньютона)
- •Дифракция света. Принцип Гюгенса-Френеля.
- •Дифракция Френеля (на отверстии и диске).
- •Дифракция Фраунгофера (на щели и решетке).
- •Естественный и поляризованный свет. Закон Малюса.
- •Поляризация при отражении и преломлении. Закон Брюстера.
- •Двойное лучепреломление. Поляризационные приборы.
- •Тепловое излучение и его характеристики. Закон Кирхгофа.
- •Излучение черного тела. Законы Стефана-Больцмана и Вина. Излучение чёрного тела и квантовая гипотеза.
- •Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •Фотоэффект. Формула Эйнштейна для фотоэффекта.
- •Эффект Комптона. Эффект Комптона — называют процесс рассеивания коротковолнового (рентгеновского) излучения на свободных электронах вещества, который сопровождается увеличением длины волны
- •Волны де Бройля.
- •Соотношение неопределенностей Гейзенберга.
- •Уравнение Шредингера. Физический смысл ψ -функции.
- •Частица в потенциальной яме.
- •Атом водорода в классической механике. Постулаты Бора.
- •Атом водорода в квантовой механике. Квантовые числа. Принцип Паули.
- •Металлы, диэлектрики, полупроводники с точки зрения зонной теории.
Законы сохранения импульса и и момента импульса
Импульс
силы Векторная
физическая величина, являющаяся мерой
действия силы за некоторый промежуток
времени. Вектор импульса силы сонаправлен с вектором силы. |
[ I ]= Н.с |
Закон Сохранения Импульса
Импульсом называют векторную величину, равную произведению массы тела на ее скорость:
При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:
Закон сохранения импульса есть следствие второго и третьего законов Ньютона. Пример использования закона сохранения импульса.
Рассмотрим неупругое столкновение, при котором выполняется закон сохранения импульса. Пусть при абсолютно неупругом столкновении двух тел их скорость будет общей после удара. Ее нужно определить. Напишем векторное уравнение, соответствующее закону сохранения импульса системы:
После проецирования векторов на выбранную ось получим скалярное уравнение, которое позволит определить искомую величину vобщ. Еще один пример - реактивное движение. Рассмотрим простейший случай этого движения, при котором происходит одномоментное взаимодействие - выстрел из винтовки.
До выстрела скорости винтовки и пули были равны нулю. После выстрела они имели различные скорости. Если известна скорость пули, ее масса и масса ружья, можно определить скорость, которую приобрело ружье после выстрела:
Отсюда после проецирования векторов на выбранную ось получим:
Для
замкнутой системы тел момент внешних
сил всегда равен нулю, так как внешние
силы вообще не действуют на замкнутую
систему.
Поэтому
,
то есть
или
Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени. Это один из фундаментальных законов природы. Аналогично для замкнутой системы тел, вращающихся вокруг оси z:
отсюда
или
.
Гармонические колебания и их характеристики. Квазиупругая сила
Гармонические колебания — колебания, происходящие под действием силы, пропорциональной смещению. Происходят по закону синуса и косинуса. x = xmaxcos(ωt+φo), φ = ωt+φo, где x — смещение тела от положения равновесия, x — амплитуда колебаний, ω — циклическая частота колебаний, φo — начальная фаза, t — время, φ — фаза гармонического колебания.
Скорость и ускорение при гармонических колебаниях.
V(t) = Δx/Δt = x,(t) (если φo=0) V = x,(t) = xmaxωcos (ωt+π/2) Vmax = xmaxω a = V,(t) = x,,(t) a = xmaxω2sin (ωt) amax = xmaxω2
Квазиупругая сила
Квазиупругая сила, направленная к центру О сила F, величина которой пропорциональна расстоянию r от центра О до точки приложения силы; численно F = cr, где с — постоянный коэффициент. Тело, находящееся под действием К. с., обладает потенциальной энергией П = 1/2cr2. Название "К. с." связано с тем, что аналогичным свойством обладают силы, возникающие при малых деформациях упругих тел (так называемые силы упругости). Для материальной точки, находящейся под действием К. с., центр О является положением устойчивого равновесия. Выведенная из этого положения точка будет совершать около О линейные гармонические колебания или описывать эллипс (в частности, окружность).