
- •Кинематические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин времени.
- •Зависимость кинематических величин времени
- •Кинематические характеристики вращательного движения твердого тела
- •Законы сохранения импульса и и момента импульса
- •Закон Сохранения Импульса
- •Гармонические колебания и их характеристики. Квазиупругая сила
- •Скорость и ускорение при гармонических колебаниях.
- •Квазиупругая сила
- •Энергия гармонических колебаний
- •Простейшие колебательные системы пружинный, физический и математический маятники.
- •Сложение одинаково направленных колебаний
- •Сложение взаимно перпендикулярных колебаний
- •Затухающие колебания. Логарифмический декремент затухания
- •Вынужденные колебания. Резонанс
- •Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния м-к
- •Распределение максвелла. Скорости молекул
- •Барометрическая формула. Распределение Больцмана Барометрическая формула — определяет зависимость давления или плотности газа от высоты в поле тяжести
- •Распределение Больцмана — концентрация молекул газа под воздействием гравитационного поля в зависити от высоты
- •Средняя длина свободного пробега молекул. Среднее число столкновений. Понятие о вакууме.
- •Явление переноса. Диффузия, внутреннее течение, теплопроводность.
- •Внутренняя энергия идеального газа. Закон равномерного распределения по степеням свободы.
- •Первое начало в применении к изопроцессам.
- •Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •Круговые процессы (циклы). Обратимый и необратимый циклы. Кпд цикла.
- •Цикл Карно и его кпд.
- •[Править]Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •Энтропия. Термодинамическое толкование энтропии. Изменение (энтропии?) в обратимых изопроцессах.
- •Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда. Поле диполя.
- •Теорема Гаусса для вектора напряженности электрического поля. Применение теоремы Гаусса. Поле бесконечной равномерно заряженной плоскости и системы плоскостей, шара и бесконечной нити.!!!!!!!!!!
- •Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал.
- •Связь между напряженностью и потенциалом. Эквипотенциальные поверхности.
- •Виды диэлектриков. Поляризация диэлектриков.
- •Напряженность электрического поля в диэлектрике. Вектор электрической индукции. Теорема Гаусса для этого вектора.
- •Энергия электрического поля. Объемная плотность энергии.
- •Объемная плотность энергии электростатического поля
- •Магнитное поле и его характеристики.
- •Закон Био-Савара-Лапласа и его применение. Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.
- •Циркуляция вектора индукции магнитного поля.
- •Закон Ампера. Закон Ампера — Если провод, по которому течет ток, находится в магнитном поле, то на каждый из носителей тока действует сила Ампера
- •Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •Работа по перемещению проводника с током.
- •Ток замыкания и размыкания.
- •Энергия магнитного поля.
- •Магнитный и механический момент электрона. Гиромагнитное соотношение.
- •Атом во внешнем поле. Диа- и парамагнетизм.
- •Вектор намагничивания. Магнитное поле в веществе.
- •Ферромагнетики и их свойства.
- •Основы теории электромагнетизма Максвелла.
- •Электромагнитные волны.
- •Интерференция света. Условия интерференции.
- •Опыт наблюдения интерференции (опыт Юнга, плоская пластина, кольца Ньютона)
- •Дифракция света. Принцип Гюгенса-Френеля.
- •Дифракция Френеля (на отверстии и диске).
- •Дифракция Фраунгофера (на щели и решетке).
- •Естественный и поляризованный свет. Закон Малюса.
- •Поляризация при отражении и преломлении. Закон Брюстера.
- •Двойное лучепреломление. Поляризационные приборы.
- •Тепловое излучение и его характеристики. Закон Кирхгофа.
- •Излучение черного тела. Законы Стефана-Больцмана и Вина. Излучение чёрного тела и квантовая гипотеза.
- •Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •Фотоэффект. Формула Эйнштейна для фотоэффекта.
- •Эффект Комптона. Эффект Комптона — называют процесс рассеивания коротковолнового (рентгеновского) излучения на свободных электронах вещества, который сопровождается увеличением длины волны
- •Волны де Бройля.
- •Соотношение неопределенностей Гейзенберга.
- •Уравнение Шредингера. Физический смысл ψ -функции.
- •Частица в потенциальной яме.
- •Атом водорода в классической механике. Постулаты Бора.
- •Атом водорода в квантовой механике. Квантовые числа. Принцип Паули.
- •Металлы, диэлектрики, полупроводники с точки зрения зонной теории.
Опыт наблюдения интерференции (опыт Юнга, плоская пластина, кольца Ньютона)
Интерференция света от двух когерентных источников (схема Юнга). Постановка задачи. (Схема Юнга, монохроматический свет от источников) Есть два монохроматических когерентных источника S1 и S2, разделённых расстоянием d. Длина волны света, излучаемого источниками, равна λ. На расстояние L от источников находится экран, где наблюдается интерференция, (расстояния выбираются так, чтобы d << L). Определить координаты точек на экране, где наблюдается максимум и минимум интерференции (рисунок 6.3.1.).
|
Схема Юнга (белый свет от источников). Если
источники посылают белый свет, то
интерференционная картина меняется.
Белый свет имеет непрерывный спектр
от фиолетового (
Рисунок 6.3.2. – Интерференция белого света. Схема опыта Юнга. |
Кольца Ньютона Постановка задачи Плосковыпуклая линза (с большим радиусом кривизны R, точка О – центр линзы) выпуклой поверхностью лежит на плоской пластине и соприкасается с ней в точке B. Между линзой и пластиной налита жидкость с показателем n, рисунок 6.3.5. Параллельный пучок монохроматического света (плоская волна) нормально падает на плоскую поверхность линзы. Рассчитать интерференционную картину.
Рисунок 6.3.5. – Схема установки для получения интерференционной картины (колец Ньютона)
• Кольца Ньютона образуются лучами, полученными при отражении света (см. рисунок 6.3.5) от поверхности воздушной прослойки, которая образована между стеклянной пластиной и соприкасающейся с ней выпуклой поверхностью линзы радиусом R. Интерференционная картина располагается на поверхности линзы и состоит из чередующихся темных и светлых колец. Светлые кольца имеют цвет монохроматического света. В центре интерференционной картины в отраженном свете – тёмное пятно. Радиусы колец равны:
,
,
где m = 0, 1, 2…. – номер кольца.
•
Кольца Ньютона в проходящем свете:
,
,
где m – номер кольца.
Рисунок 6.3.6. – Интерференционная картина (кольца Ньютона) в отраженном свете