
- •Кинематические характеристики поступательного движения. Нормальное и тангенциальное ускорения. Зависимость кинематических величин времени.
- •Зависимость кинематических величин времени
- •Кинематические характеристики вращательного движения твердого тела
- •Законы сохранения импульса и и момента импульса
- •Закон Сохранения Импульса
- •Гармонические колебания и их характеристики. Квазиупругая сила
- •Скорость и ускорение при гармонических колебаниях.
- •Квазиупругая сила
- •Энергия гармонических колебаний
- •Простейшие колебательные системы пружинный, физический и математический маятники.
- •Сложение одинаково направленных колебаний
- •Сложение взаимно перпендикулярных колебаний
- •Затухающие колебания. Логарифмический декремент затухания
- •Вынужденные колебания. Резонанс
- •Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния м-к
- •Распределение максвелла. Скорости молекул
- •Барометрическая формула. Распределение Больцмана Барометрическая формула — определяет зависимость давления или плотности газа от высоты в поле тяжести
- •Распределение Больцмана — концентрация молекул газа под воздействием гравитационного поля в зависити от высоты
- •Средняя длина свободного пробега молекул. Среднее число столкновений. Понятие о вакууме.
- •Явление переноса. Диффузия, внутреннее течение, теплопроводность.
- •Внутренняя энергия идеального газа. Закон равномерного распределения по степеням свободы.
- •Первое начало в применении к изопроцессам.
- •Адиабатический процесс. Уравнение Пуассона. Работа газа при адиабатическом процессе. Адиабатическая теплоемкость.
- •Круговые процессы (циклы). Обратимый и необратимый циклы. Кпд цикла.
- •Цикл Карно и его кпд.
- •[Править]Описание цикла Карно
- •[Править]кпд тепловой машины Карно
- •Энтропия. Термодинамическое толкование энтропии. Изменение (энтропии?) в обратимых изопроцессах.
- •Статистическое толкование энтропии. Макро- и микросостояния системы. Термодинамическая вероятность.
- •Напряженность электрического поля. Графическое изображение электрических полей. Принцип суперпозиции. Поле точечного заряда. Поле диполя.
- •Теорема Гаусса для вектора напряженности электрического поля. Применение теоремы Гаусса. Поле бесконечной равномерно заряженной плоскости и системы плоскостей, шара и бесконечной нити.!!!!!!!!!!
- •Работа по перемещению заряда в электрическом поле. Циркуляция вектора напряженности. Потенциал.
- •Связь между напряженностью и потенциалом. Эквипотенциальные поверхности.
- •Виды диэлектриков. Поляризация диэлектриков.
- •Напряженность электрического поля в диэлектрике. Вектор электрической индукции. Теорема Гаусса для этого вектора.
- •Энергия электрического поля. Объемная плотность энергии.
- •Объемная плотность энергии электростатического поля
- •Магнитное поле и его характеристики.
- •Закон Био-Савара-Лапласа и его применение. Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.
- •Циркуляция вектора индукции магнитного поля.
- •Закон Ампера. Закон Ампера — Если провод, по которому течет ток, находится в магнитном поле, то на каждый из носителей тока действует сила Ампера
- •Сила Лоренца. Действие магнитного поля на движущийся заряд.
- •Поток вектора индукции. Теорема Гаусса для вектора индукции.
- •Работа по перемещению проводника с током.
- •Ток замыкания и размыкания.
- •Энергия магнитного поля.
- •Магнитный и механический момент электрона. Гиромагнитное соотношение.
- •Атом во внешнем поле. Диа- и парамагнетизм.
- •Вектор намагничивания. Магнитное поле в веществе.
- •Ферромагнетики и их свойства.
- •Основы теории электромагнетизма Максвелла.
- •Электромагнитные волны.
- •Интерференция света. Условия интерференции.
- •Опыт наблюдения интерференции (опыт Юнга, плоская пластина, кольца Ньютона)
- •Дифракция света. Принцип Гюгенса-Френеля.
- •Дифракция Френеля (на отверстии и диске).
- •Дифракция Фраунгофера (на щели и решетке).
- •Естественный и поляризованный свет. Закон Малюса.
- •Поляризация при отражении и преломлении. Закон Брюстера.
- •Двойное лучепреломление. Поляризационные приборы.
- •Тепловое излучение и его характеристики. Закон Кирхгофа.
- •Излучение черного тела. Законы Стефана-Больцмана и Вина. Излучение чёрного тела и квантовая гипотеза.
- •Формула Релея-Джонса. Квантовая природа излучения. Формула Планка.
- •Фотоэффект. Формула Эйнштейна для фотоэффекта.
- •Эффект Комптона. Эффект Комптона — называют процесс рассеивания коротковолнового (рентгеновского) излучения на свободных электронах вещества, который сопровождается увеличением длины волны
- •Волны де Бройля.
- •Соотношение неопределенностей Гейзенберга.
- •Уравнение Шредингера. Физический смысл ψ -функции.
- •Частица в потенциальной яме.
- •Атом водорода в классической механике. Постулаты Бора.
- •Атом водорода в квантовой механике. Квантовые числа. Принцип Паули.
- •Металлы, диэлектрики, полупроводники с точки зрения зонной теории.
Энергия электрического поля. Объемная плотность энергии.
Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает
Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно,
Если поле однородно (что имеет место в плоском конденсаторе при расстоянии dмного меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна
C
учетом соотношения
можно
записать
В
изотропном диэлектрике направления
векторов D и E совпадают
и
Подставим
выражение
,
получим
Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов qi на величину dri, составляет
Выражение
в скобках есть дипольный момент единицы
объема или поляризованность диэлектрика Р.
Следовательно,
.
Вектор P связан
с вектором E соотношением
.
Подставив это выражение в формулу для
работы, получим
Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика
.
Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл:
Объемная плотность энергии электростатического поля
Это
физическая величина, численно равная
отношению потенциальной энергии поля,
заключенной в элементе объема, к этому
объему. Для однородного поля объемная
плотность энергии равна
.
Для плоского конденсатора, объем которого
Sd, где S - площадь пластин, d - расстояние
между пластинами, имеем
С
учетом, что
и
|
(16.4) |
или
|
Магнитное поле и его характеристики.
Магнитное поле представляет собой особую форму материи и проявляется в пространстве в виде определенного рода сил, которые легко обнаруживаются по своему действию на намагниченные тела. Действие этих сил на намагниченные тела объясняется наличием в телах быстро движущихся внутримолекулярных электрических зарядов.
Согласно определению, магнитная индукция и магнитный поток связаны соотношением
Для характеристики намагниченности вещества в магнитном поле используется магнитный момент рm, который численно равен механическому моменту, испытываемому веществом в магнитном поле с индукцией в 1 Тл
Магнитный момент можно определить из уравнения
где М - механический момент, испытываемый веществом; α - угол между вектором индукции и вектором магнитного момента.
Магнитный момент единицы объема вещества определяет интенсивность его намагничивания или намагниченность I
где V - объем вещества.
Магнитное поле характеризуется напряженностью H. Напряженностью магнитного поля в данной точке называется сила, с которой поле действует на единицу положительной магнитной массы, помещенную в эту точку поля.
Магнитная индукция В связана с напряженностью магнитного поля соотношением
где μ - относительная магнитная проницаемость среды; μ0 - магнитная постоянная.
Неоднородность магнитного поля в данной его точке характеризуется градиентом его напряженности grad H:
Для однородных полей dH/dx=0, для неоднородных dH/dx>0. Силой магнитного поля Fп(А2/м3) в данной его точке называют произведение градиента его напряженности на напряженность поля в данной точке
Магнитные свойства вещества характеризуются магнитной восприимчивостью х и удельной магнитной восприимчивостью
где δ - плотность вещества.
Магнитная
сила
м,
действующая на минеральное зерно с
массой т, помещенное в магнитное поле,
оценивается зависимостью
где
удельная магнитная сила
Одно из важнейших свойств магнитного поля - явление электромагнитной индукции. Его суть состоит в том, что при всяком изменении магнитного потока, пронизывающего какой-либо контур, в нем наводится электродвижущая сила. Другим свойством магнитного поля является механическое взаимодействие его с электрическим током. Минеральные частицы, попадая в магнитное поле, влияют на расположение его силовых линий. Магнитные частицы оказывают небольшое сопротивление магнитным силовым линиям, поэтому последние в них концентрируются. Устремляясь по кратчайшему пути, силовые линии втягивают магнитные частицы в пространство между полюсами. Немагнитные частицы ухудшают проводимость, поэтому силовые линии обходят их и выталкивают из поля.
Физическая сущность магнитной сепарации состоит в том, что магнитное поле искажает гравитационную траекторию минералов, обладающих соответствующими магнитными свойствами, чем вызывает их извлечение из потока других минералов, которые таких свойств не имеют.