
- •1 Методы расчета нелинейных электрических цепей постоянного тока
- •2 .Комплексная мощность в цепи гармонического тока. Баланс мощности
- •4Логарифмические частотные характеристики
- •8.Теорема об эквивалентном источнике(генираторе).Её прминение в тэц
- •12 Свойства преобразования Фурье .Теоремы о спектрах( с доказательствами)
- •13 Второй закон коммутации
- •16. Переход от периодической последовательности импульсов к одиночному импульсу. Спектральная плотность и её составляющие. Размерность спектральной плотности сигнала.
- •18. Разложение периодического несинусоидального воздействия в ряд Фурье. Ряд Фурье в комплексной форме (с выводом).
- •20. Интегрирующие цепи. Требования к интегрирующим цепям в частотной и временной областях.
- •24. Интеграл Дюамеля и его применение к определению отклика на непрерывно изменяющееся воздействие.
- •25. Закон Ома и Кирхгофа в операторной форме. Принцип составления операторной схемы замещения исходной электрической цепи.
- •Вопрос 26. Связь переходной и импульсной характеристик. Выражение h(t) и g(t) через операторный коэффициент передачи.
- •28. Временные характеристики лэц. Импульсная характеристика, её виды и размерность. Способы определения g(t) (привести примеры).
- •29. Предельные соотношения и их использование в операторном методе анализа переходных процессов.
- •30. Временные характеристики лэц. Переходная характеристика, виды переходных характеристик. Способы определения h(t) (привести примеры).
- •32. Операторный коэффициент передачи лэц. Виды операторного коэффициента передачи. Определение операторного коэффициента передачи по схеме (привести примеры).
- •33. Виды комплексного коэффициента передачи цепи. Ачх и фчх электрической цепи. Привести примеры.
- •36. Законы изменения тока и напряжения при апериодическом характере переходного процесса.
- •37. Преобразование Лапласа. Требование в преобразуемым функциям.
- •40. Нелинейные цепи. Классификация нелинейных электрических цепей. Вольт-амперные характеристики нелинейных цепей. Аппроксимация вах.
- •41. Нелинейные искажения. Оценка нелинейных искажений.
- •43. Методы расчётов нелинейных электрич. Цепей на переменном токе.
- •44. Операторный метод расчёта переходных процессов.
- •45. Методы расчётов переходных процессов в нелинейных цепях.
- •46. Временные характеристики лэц. Импульсная характеристика, её виды и размерность. Способы определения g(t)
- •48. Предельные соотношения и их использование в операторном методе анализа переходных процессов.
- •49. Интегрирующие цепи. Требования к интегрирующим цепям в частотной и временной областях.
- •51. Определение оригинала по операторному изображению переходной величины. Формула разложения для простых вещественных корней.
- •53. Временные характеристики электрических цепей. Переходная характеристика её виды и размерность Способы определения h(t)
36. Законы изменения тока и напряжения при апериодическом характере переходного процесса.
Первый закон. В любой ветви с индуктивностью ток не может изменяться скачком и в момент коммутации сохраняет то значение, которое он имел непосредственно перед моментом коммутации.
Второй закон. Напряжение на емкости сразу после коммутации сохраняет то значение, которое оно имело непосредственно перед моментом коммутации.
37. Преобразование Лапласа. Требование в преобразуемым функциям.
Преобразова́ние
Лапла́са —
интегральное преобразование, связывающее
функцию
комплексного
переменного (изображение)
с функцией
вещественного
переменного (оригинал).
С его помощью исследуются свойства динамических
систем и
решаются дифференциальные и интегральные
уравнения.
Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.
38. Расчёт гармонических цепей постоянного тока. МКТ в комплексной форме.
Расчет электрических цепей, содержащих источники энергии [источники ЭДС E(t) и источники тока j(t)] с несинусоидальной формой кривой, выполняется по методу положения. Процедуру расчета можно условно разделить на три этапа.
1)Гармонический анализ.
На этом этапе выполняется разложение несинусоидальных функций источников ЭДС e(t) и источников тока j(t) в гармонический ряд Фурье.
2)Аналитический расчет.
Производится аналитический расчет схемы последовательно для каждой гармоники в отдельности. Для постоянной составляющей расчет производится как для резистивной цепи постоянного тока, при этом участки с катушками L закорачиваются, а ветви с конденсаторами C размыкается.
3.Синтез решения.
На заключительной стадии расчета определяются искомые величины согласно условию задачи.
39. Дифференцирующие цепи. Требования к дифференцирующим цепям в частотной и временной областях.
ДИФФЕРЕНЦИРУЮЩАЯ
ЦЕПЬ -
устройство, предназначенное для
дифференцирования по времени электрич.
сигналов. Выходная
реакция Д. ц. uвых(t)
связана со входным воздействием uвх(t)
соотношением
,
где
-
пост. величина, имеющая размерность
времени. Различают пассивные и активные
Д. ц. Пассивные Д. ц. применяют в импульсных
и цифровых устройствах для укорачивания
импульсов. Aктивные Д. ц. используют как
дифференциаторы в аналоговых вычислит.
устройствах.
40. Нелинейные цепи. Классификация нелинейных электрических цепей. Вольт-амперные характеристики нелинейных цепей. Аппроксимация вах.
Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент.
Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.
Вольтамперные
характеристики нелинейных элементов
на практике чаще всего получают
экспериментальным путем и представляют
их или в графической форме [в виде
графической диаграммы функции
],
или в табличной форме [в виде таблицы
координат точек функции
].
При аналитических методах расчета
нелинейных цепей к ВАХ предъявляются
требования, чтобы они были представлены
в аналитической форме, т.е. в виде
аналитического выражения.
Под аппроксимацией ВАХ понимают замену ее графической или табличной формы на аналитическую. К уравнению аппроксимации предъявляются два противоречивых требования. Во-первых, уравнение аппроксимации должно по возможности точно описывать заданную ВАХ. Для более полного выполнения этого требования необходимо усложнять структуру этого уравнения. Во-вторых, уравнение аппроксимации, будучи введенным в систему уравнений Кирхгофа, должно позволять решение этой системы доступными методами. Для выполнения этого требования структура этого уравнения должна быть по возможности более простой. Таким образом, при выборе уравнения аппроксимации всегда приходится принимать компромиссное решение между этими двумя требованиями.
Различают два способа аппроксимации нелинейных ВАХ – полная и кусочная (по частям).