
- •1 Методы расчета нелинейных электрических цепей постоянного тока
- •2 .Комплексная мощность в цепи гармонического тока. Баланс мощности
- •4Логарифмические частотные характеристики
- •8.Теорема об эквивалентном источнике(генираторе).Её прминение в тэц
- •12 Свойства преобразования Фурье .Теоремы о спектрах( с доказательствами)
- •13 Второй закон коммутации
- •16. Переход от периодической последовательности импульсов к одиночному импульсу. Спектральная плотность и её составляющие. Размерность спектральной плотности сигнала.
- •18. Разложение периодического несинусоидального воздействия в ряд Фурье. Ряд Фурье в комплексной форме (с выводом).
- •20. Интегрирующие цепи. Требования к интегрирующим цепям в частотной и временной областях.
- •24. Интеграл Дюамеля и его применение к определению отклика на непрерывно изменяющееся воздействие.
- •25. Закон Ома и Кирхгофа в операторной форме. Принцип составления операторной схемы замещения исходной электрической цепи.
- •Вопрос 26. Связь переходной и импульсной характеристик. Выражение h(t) и g(t) через операторный коэффициент передачи.
- •28. Временные характеристики лэц. Импульсная характеристика, её виды и размерность. Способы определения g(t) (привести примеры).
- •29. Предельные соотношения и их использование в операторном методе анализа переходных процессов.
- •30. Временные характеристики лэц. Переходная характеристика, виды переходных характеристик. Способы определения h(t) (привести примеры).
- •32. Операторный коэффициент передачи лэц. Виды операторного коэффициента передачи. Определение операторного коэффициента передачи по схеме (привести примеры).
- •33. Виды комплексного коэффициента передачи цепи. Ачх и фчх электрической цепи. Привести примеры.
- •36. Законы изменения тока и напряжения при апериодическом характере переходного процесса.
- •37. Преобразование Лапласа. Требование в преобразуемым функциям.
- •40. Нелинейные цепи. Классификация нелинейных электрических цепей. Вольт-амперные характеристики нелинейных цепей. Аппроксимация вах.
- •41. Нелинейные искажения. Оценка нелинейных искажений.
- •43. Методы расчётов нелинейных электрич. Цепей на переменном токе.
- •44. Операторный метод расчёта переходных процессов.
- •45. Методы расчётов переходных процессов в нелинейных цепях.
- •46. Временные характеристики лэц. Импульсная характеристика, её виды и размерность. Способы определения g(t)
- •48. Предельные соотношения и их использование в операторном методе анализа переходных процессов.
- •49. Интегрирующие цепи. Требования к интегрирующим цепям в частотной и временной областях.
- •51. Определение оригинала по операторному изображению переходной величины. Формула разложения для простых вещественных корней.
- •53. Временные характеристики электрических цепей. Переходная характеристика её виды и размерность Способы определения h(t)
29. Предельные соотношения и их использование в операторном методе анализа переходных процессов.
для нахождения начального и конечного значений оригинала можно использовать предельные соотношения -служат для оценки правильности полученного изображения.
F(0)=
F(
30. Временные характеристики лэц. Переходная характеристика, виды переходных характеристик. Способы определения h(t) (привести примеры).
Отношение реакции электрической цепи на ступенчатое воздействие к величине воздействия при нулевых начальных условиях называют переходной характеристикой цепи. Переходные характеристики электрических цепей относятся к числу нормированных временных характеристик устойчивых линейных электрических цепей. При этом с неограниченным ростом времени значения переходной характеристики асимптотически приближаются к некоторой конечной величине, характеризующей относительную величину реакции электрической цепи в режиме постоянного тока. В частных случаях значение этого предела может быть равно нулю.
32. Операторный коэффициент передачи лэц. Виды операторного коэффициента передачи. Определение операторного коэффициента передачи по схеме (привести примеры).
В основе операторного метода лежит преобразование Лапласа и операционное исчисление, известные из курса высшей математики. Операторный метод позволяет производить анализ переходных процессов при воздействии сигналов любой формы и не требует определения постоянных интегрирования, что существенно упрощает анализ электрических цепей, порядок которых выше чем первый.
33. Виды комплексного коэффициента передачи цепи. Ачх и фчх электрической цепи. Привести примеры.
При частотном методе анализа электрическая цепь задается своими частотными характеристиками (АЧХ и ФЧХ), которые в большинстве практических случаев могут быть просто измерены или рассчитаны. При этом необходимо определить реакцию на произвольное (негармоническое) воздействие. Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний, то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций, вызванных каждым гармоническим воздействием в отдельности. Таким образом, частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами, начальными фазами и частотами, а также задачу определения реакций цепи на каждую гармоническую составляющую воздействия и их суммирование.
35. Спектральная плотность и её составляющие. Размерность спектральной плотности сигнала.
Условие
абсолютной интегрируемости
функции
ограничивает
класс сигналов, для которых существует
формула для спектральной плотности,
выраженная обычными функциями. К таким
сигналам относятся важные для анализа
прохождения сигналов через электронные
цепи функции, как гармоническое колебание,
заданное при
единичный
скачок (функция Хевисайда), постоянный
сигнал и др. Это позволяет сделать так
называемая дельта-функция (функция
Дирака)- бесконечно короткий импульс с
единичной площадью.