
- •1 Методы расчета нелинейных электрических цепей постоянного тока
- •2 .Комплексная мощность в цепи гармонического тока. Баланс мощности
- •4Логарифмические частотные характеристики
- •8.Теорема об эквивалентном источнике(генираторе).Её прминение в тэц
- •12 Свойства преобразования Фурье .Теоремы о спектрах( с доказательствами)
- •13 Второй закон коммутации
- •16. Переход от периодической последовательности импульсов к одиночному импульсу. Спектральная плотность и её составляющие. Размерность спектральной плотности сигнала.
- •18. Разложение периодического несинусоидального воздействия в ряд Фурье. Ряд Фурье в комплексной форме (с выводом).
- •20. Интегрирующие цепи. Требования к интегрирующим цепям в частотной и временной областях.
- •24. Интеграл Дюамеля и его применение к определению отклика на непрерывно изменяющееся воздействие.
- •25. Закон Ома и Кирхгофа в операторной форме. Принцип составления операторной схемы замещения исходной электрической цепи.
- •Вопрос 26. Связь переходной и импульсной характеристик. Выражение h(t) и g(t) через операторный коэффициент передачи.
- •28. Временные характеристики лэц. Импульсная характеристика, её виды и размерность. Способы определения g(t) (привести примеры).
- •29. Предельные соотношения и их использование в операторном методе анализа переходных процессов.
- •30. Временные характеристики лэц. Переходная характеристика, виды переходных характеристик. Способы определения h(t) (привести примеры).
- •32. Операторный коэффициент передачи лэц. Виды операторного коэффициента передачи. Определение операторного коэффициента передачи по схеме (привести примеры).
- •33. Виды комплексного коэффициента передачи цепи. Ачх и фчх электрической цепи. Привести примеры.
- •36. Законы изменения тока и напряжения при апериодическом характере переходного процесса.
- •37. Преобразование Лапласа. Требование в преобразуемым функциям.
- •40. Нелинейные цепи. Классификация нелинейных электрических цепей. Вольт-амперные характеристики нелинейных цепей. Аппроксимация вах.
- •41. Нелинейные искажения. Оценка нелинейных искажений.
- •43. Методы расчётов нелинейных электрич. Цепей на переменном токе.
- •44. Операторный метод расчёта переходных процессов.
- •45. Методы расчётов переходных процессов в нелинейных цепях.
- •46. Временные характеристики лэц. Импульсная характеристика, её виды и размерность. Способы определения g(t)
- •48. Предельные соотношения и их использование в операторном методе анализа переходных процессов.
- •49. Интегрирующие цепи. Требования к интегрирующим цепям в частотной и временной областях.
- •51. Определение оригинала по операторному изображению переходной величины. Формула разложения для простых вещественных корней.
- •53. Временные характеристики электрических цепей. Переходная характеристика её виды и размерность Способы определения h(t)
51. Определение оригинала по операторному изображению переходной величины. Формула разложения для простых вещественных корней.
Переход от изображений к оригиналам
Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами:
1. Посредством обратного преобразования Лапласа
,
которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как:
.
На практике этот способ применяется редко.
2. По таблицам соответствия между оригиналами и изображениями
В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала.
Например, для изображения тока в цепи на рис. 5 можно записать
.
Тогда в соответствии с данными табл. 1
,
что соответствует известному результату.
3. С использованием формулы разложения
Пусть изображение искомой переменной определяется отношением двух полиномов
,
где .
Это выражение может быть представлено в виде суммы простых дробей
, |
(3) |
где - к-й корень уравнения .
Для определения коэффициентов умножим левую и правую части соотношения (3) на ( ):
.
При
.
Рассматривая полученную неопределенность типа по правилу Лапиталя, запишем
.
Таким образом,
.
Поскольку отношение есть постоянный коэффициент, то учитывая, что , окончательно получаем
. |
(4) |
Соотношение (4) представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е. , то уравнение (4) сводится к виду
.
В заключение раздела отметим, что для нахождения начального и конечного значений оригинала можно использовать предельные соотношения
которые также могут служить для оценки правильности полученного изображения.
52. Классический метод анализа переходных процессов. Составление уравнений, описывающих переходный процесс. Свободная и принуждённая составляющие переходных величин. Свойства свободной и принуждённой составляющих.
Классический метод анализа переходных процессов основан на составлении системы дифференциальных и алгебраических уравнений с использованием уравнений для элементов и законов Кирхгофа для мгновенных токов и напряжений в цепи:
Для определения интересующей реакции систему исходных уравнений путем исключения остальных переменных приводят к одному линейному уравнению n-го порядка с постоянными коэффициентами:
,
(1.4)
где i(t) - искомая переменная; f(t) - правая часть, обусловленная возмущающими силами, т.е. функциями источников.
Напомним известные из курса математики сведения о решении линейных дифференциальных уравнений. Общее решение линейного дифференциального уравнения (1.4) определяется в виде суммы двух составляющих:
i(t) = iсв(t) + iвын(t) .
(1.5)
Первая составляющая называется свободной или собственной и определяется как общее решение соответствующего однородного уравнения, которое получается из (1.4) путем приравнивания нулю правой части f(t) = 0:
(1.6)
Для определения общего решения (1.6) составляется характеристическое уравнение, которое получается из (1.6) путем замены k -той производной на pk . При этом сама искомая переменная заменяется на единицу. Характеристическое уравнение
pn + bn-1pn-1 + ........... +b1p + b0 = 0
(1.7)
является алгебраическим уравнением степени n и его корни pk определяют общее решение однородного дифференциального уравнения:
,
(1.8)
где Ak - постоянные интегрирования.
Решение (1.8) записано для случая различных корней pk . Входящие в (1.8) n постоянных интегрирования определяются по известным независимым начальным условиям.
Заметим, что в однородном дифференциальном уравнении (1.6) правая часть приравнивается нулю, что означает отсутствие в цепи внешнего воздействия, т.е. источника. Поэтому токи и напряжения в ветвях цепи будут определяться только параметрами и свойствами самой цепи, а также начальным запасом энергии. Физически очевидно, что для реальных цепей собственная составляющая iсв(t) при отсутствии источников должна стремиться со временем к нулю. Эта составляющая существует во время переходного процесса.
Вторая составляющая iвын(t) решения (1.5) называется вынужденной и представляет собой частное решение неоднородного дифференциального уравнения (1.4) (с ненулевой правой частью). Из математики известно, что вид частного решения определяется видом правой части уравнения. В частности, если правая часть f(t) - константа, то и частное решение ищется в виде константы. Если правая часть является гармонической функцией с определенными частотой, амплитудой и начальной фазой, то и частное решение будет гармонической функцией той же частоты, для которой нужно определить амплитуду и начальную фазу.
Таким образом, вынужденная составляющая обусловлена воздействием источников в цепи и при t искомая переменная i(t) iвын(t). Поэтому вынужденная составляющая называется установившейся и определяется как установившееся значение (в случае постоянной вынуждающей силы) или как установившаяся функция (в случае гармонической вынуждающей силы) для искомой переменной в цепи после коммутации
iвын(t) = iуст(t)
(1.9)
Необходимо отметить, что определение вынужденной составляющей в случае воздействия сигналов более сложной формы, чем упомянутые выше, представляет достаточно сложную задачу.
В заключении приведем рекомендуемый порядок расчета переходных процессов классическим методом.
1. Определить независимые начальные условия iLk(0+) и uCk(0+) с использованием законов коммутации.
2. Для цепи после коммутации составить систему уравнений Кирхгофа с использованием уравнений для элементов.
3. Полученную систему разрешить относительно искомой переменной. При этом получится одно дифференциальное уравнение n-ой степени, где n равно общему числу индуктивностей и емкостей, в которых можно задавать независимые начальные условия.
4. Определить решение полученного дифференциального уравнения
(1.10)
где iвын(t)=iуст(t) -вынужденная (установившаяся) составляющая; pk - корни характеристического уравнения; Ak - постоянные интегрирования, определяемые из начальных условий.
Далее классический метод будет использован для анализа переходных процессов в простейших RL, RC и RLC- цепях.