
- •Лекция 1. Введение. Системное программное обеспечение. Состав системного программного обеспечения
- •Лекция 2. Принципы функционирования систем программирования
- •Этапы подготовки программы
- •Трансляторы и интерпретаторы – общая схема работы
- •Лекция 4. Назначение и функции компоновщика.
- •Раздельная компиляция
- •Переместимые коды и абсолютные коды
- •Редактирование связей с оверлеями
- •Связывание с динамически подсоединяемыми библиотеками (dll)
- •Лекция 5. Назначение и функции программы загрузчика
- •Виды загрузчиков. Загрузчики типа «компиляция-выполнение».
- •Абсолютный загрузчик
- •Настраивающий загрузчик
- •Непосредственно связывающий загрузчик
- •Динамический загрузчик
- •Программные отладчики и их эксплуатация
- •Лекция 6. Базовые понятия языка.
- •Лекция 7. Базовые понятия языка.
- •Лекция 8. Команды и алгоритмы языка.
- •Лекция 9.1. Сложные структуры данных.
- •Команда loop
- •Лекция 9.2. Сложные структуры данных. Структуры
- •Объединения
- •Лекция 2.4. Организация и использование подпрограмм
- •Передача параметров по значению
- •Передача параметров по ссылке
- •Передача параметров по возвращаемому значению
- •Передача параметров по результату
- •Передача параметров по имени
- •Передача параметров отложенным вычислением
- •Передача параметров в регистрах
- •Передача параметров в глобальных переменных
- •Передача параметров в стеке
- •Передача параметров в потоке кода
- •Передача параметров в блоке параметров
- •Лекция 2.5. Макросредства языка Ассемблер
- •Лекция 2.6. Работа с файлами, каталогами и дисками под управлением ms-dos
- •Лекция 3.1. Структура и программирование контроллера прерываний.
- •Лекция 4.1. Работа с консолью. Организация ввода/вывода информации.
- •Лекция 5.1. Системные средства управления памятью
- •Окружение dos
- •Лекция 6.1. Основы организации резидентных программ
- •7.1. Функции драйвера
- •7.2. Архитектура драйвера
- •Процесс загрузки драйверов
- •7.3 Команды драйвера
Лекция 9.1. Сложные структуры данных.
Микропроцессор позволяет масштабировать индекс. Это означает, что если указать после имени индексного регистра знак умножения “*” с последующей цифрой 2, 4 или 8, то содержимое индексного регистра будет умножаться на 2, 4 или 8, то есть масштабироваться.
Применение масштабирования облегчает работу с массивами, которые имеют размер элементов, равный 2, 4 или 8 байт, так как микропроцессор сам производит коррекцию индекса для получения адреса очередного элемента массива. Нам нужно лишь загрузить в индексный регистр значение требуемого индекса (считая от 0). Кстати сказать, возможность масштабирования появилась в микропроцессорах Intel, начиная с модели i486. По этой причине в рассматриваемом здесь примере программы стоит директива .486. Ее назначение, как и ранее использовавшейся директивы .386, в том, чтобы указать ассемблеру при формировании машинных команд на необходимость учета и использования дополнительных возможностей системы команд новых моделей микропроцессоров.
Команда loop
Для организации цикла предназначена команда LOOP. У этой команды один операнд – имя метки, на которую осуществляется переход. В качестве счётчика цикла используется регистр CX. Команда LOOP выполняет декремент CX, а затем проверяет его значение. Если содержимое CX не равно нулю, то осуществляется переход на метку, иначе управление переходит к следующей после LOOP команде.
Содержимое CX интерпретируется командой как число без знака. В CX нужно помещать число, равное требуемому количеству повторений цикла. Понятно, что максимально может быть 65535 повторений. Ещё одно ограничение связано с дальность перехода. Метка должна находиться в диапазоне -127…+128 байт от команды LOOP (если это не так, компилятор сообщит об ошибке).
Лекция 9.2. Сложные структуры данных. Структуры
Структуры представляют собой шаблоны с описаниями форматов данных, которые можно накладывать на различные участки памяти, чтобы затем обращаться к полям этих участков с помощью мнемонических имен, определенных в описании структуры. Структуры особенно удобны в тех случаях, когда мы обращаемся к областям памяти, не входящим в сегменты программы, т.е. к полям, которые нельзя описать с помощью символических имен. Используются структуры также и в тех случаях, когда в программе многократно повторяются сложные коллекции данных с единым строением, но различающимися значениями. Пусть в программе, выполняющей обработку медицинской информации о пациентах, надо объявить несколько блоков данных с однородными сведениями о нескольких пациентах. Такой комплект данных удобно оформить в виде структуры, придав как всей структуре, так и составляющим се данным наглядные имена:
meddata struc ;Структура с именем meddata
index dd 0 ; Номер карты
sex db 0 ;Пол
birth dw 0 ;Год рождения
datein db ' / / ' ;Дата поступления
dateout db ' / / ' ;Дата выписки
meddata ends ;Конец описания структуры
Описание структуры можно располагать в любом месте программы, но до описания конкретных структурных переменных. Транслятор, встретившись с описанием структуры, не транслирует ее текст, т.е. не выделяет место в памяти, а просто запоминает приведенное описание, чтобы воспользоваться им в дальнейшем, если в программе встретятся объявления переменных типа этой структуры. В сегменте данных можно объявить любое количество переменных, соответствующих по составу описанной ранее структуре, дав им произвольные имена. Эти переменные можно заполнить при их объявлении конкретными данными (разумеется, соответствующими элементам описанной ранее структуры), но можно и не указывать конкретных данных, если данную переменную предполагается инициализировать не на этапе ее объявления, а по ходу выполнения программы. В последнем случае транслятор выделяет под переменную место в памяти (в нашем примере 23 байт), заполнив ее той конкретной информацией, которая была указана в описании структуры:
data segment
pat 1 meddata <1234567, 'м',1955, 1З/06/981, '15/06/98'>
pat2 meddata <1982234, 'м',1932, '18/06/98', '25/06/98 '>
pat3 meddata <4389012, 'ж',1966, '01/12/97', '15/12/97'>
pattemp meddata <>
data ends
Имена patl, pat2 и т.д. будут служить именами переменных, каждая из которых содержит полный комплект данных об одном пациенте. Угловые скобки ограничивают конкретные данные, поступающие в каждую структурную переменную. Для переменной с именем pattemp транслятор выделит в памяти 23 байт, поместив в нее в точности то, что было указано в описании структуры (нули и два символьные шаблона для даты):
0,0,0, ' / / ',' / / '
При обработке данных в программе можно пользоваться мнемоническими обозначениями всей структуры и ее составляющих, причем имена элементов структуры должны отделяться точкой:
mov EAX,patl.index ;ЕАХ=1234567
mov SI,offset patl.datein ;31=смещение элемента patl.datein
mov DL,pat3.sex ;DL='ж'
Адрес конкретной структурной переменной можно поместить в базовый или индексный регистр, и пользоваться им в конструкциях с косвенной адресацией:
mov BX,offset pat3 ;ВХ=смещение pat3
mov EAX,[BX].index ;EAX=4389012
mov [BX].sех,'м' ;Программная инициализация
Имена элементов структуры являются, в сущности, смещениями к этим элементам от начала структуры. В некоторых случаях их можно использовать в этом качестве и без предваряющей точки:
mov BX, off set pat2 ;ВХ=смещение pat2
add BX,sex ;ВХ=смещение pat2.sex
mov DL, [BX] ;DL='M'
mov SI,birth ;SI=5 (сомнительная команда)
Записи
Записи, как и структуры, представляют собой шаблоны, накладываемые на реальные данные с целью введения удобных мнемонических обозначений отдельных элементов данных. В отличие от структур, дающих имена байтам, словам, двойным словам или целым массивам, в записях определяются строки битов внутри байтов, слов или двойных слов. Известно, что дата создания файла хранится в каталоге диска в виде 16-битового слова, в котором старшие 7 бит обозначают год (от 1980), следующие 4 бит - месяц и последние 5 бит - день.
Рис. Формат записи даты в каталоге диска.
Эти данные удобно специфицировать с помощью записи filedate, определяемой в программе следующим образом:
fdate record year: 7, month: 4, day: 5
Ключевое слово record говорит о том, что имя fdate относится к записи, а мнемонические обозначения year, month и day являются произвольными именами отдельных битовых полей описываемого слова. Включение в программу описания шаблона битовых полей позволяет отказаться от утомительного и чреватого ошибками определения "вручную" содержимого полного данного по задаваемым значениям его отдельных составляющих. Для приведенной выше записи объявления конкретных переменных будут выглядеть следующим образом:
filel fdate <5,6,7> ;7 июня 1985г.
file2 fdate <18,12,30> ;30 декабря 1998г.
file3 fdate <> ;"Пустая" (пока) переменная
Переменная filel будет определена, как число 0AC7h, file2 - как число 259Eh, а fileЗ - как число 0000h. При необходимости программного заполнения переменной типа fdate можно пользоваться именами ее составляющих, которые трактуются ассемблером, как индексы соответствующих битовых полей, отсчитываемые от младшего конца слова. Для приведенного примера day=0, month=5, a year=9. Однако в системе команд МП 86 практически нет средств работы с битовыми полями. Поэтому программное заполнение придется осуществлять с помощью команд сдвигов и логического сложения:
mov file3,30 ;Помещаем день
mov AX,12 ;Месяц пока в АХ
mov CL,month ;Будем сдвигать на month бит
shl AX,CL ; Сдвинули месяц в АХ на 5 бит
or file3,AX ;Добавили биты месяца в file3
mov AX, 18 ;Год пока в АХ
mov CL,year ;Будем сдвигать на year бит
shl AX,CL ;Сдвинули год в АХ на 9 бит
or file3,AX ;Добавили биты года в file3
В итоге в переменной file3 окажется тот же код 259Eh, что и в переменной file2.