Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Осн технолог вироб 3.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.34 Mб
Скачать

Тема 2.9. Біотехнології та їх застосування в народному господарстві

План

  1. Етапи становлення біотехнології як науки та галузі виробництва.

  2. Суть біотехнологічних процесів, їхня відмінність, переваги і проблеми порівняно з традиційними технологічними процесами.

  3. Типова схема біотехнологічного виробництва і її основні складові.

  1. Живильні середовища— сировина біотехнологічних процесів.

  2. Продуценти як основа біотехнологічних виробництв.

  3. Процес ферментації.

  4. Ферментатори або біореактори.

  5. Виділення, очищення і концентрування продуктів ферментації.

  6. Виробництво кормової мікробної біомаси як типовий приклад біотехнологічного процесу.

4. Основні сфери застосування біотехнологій.

  1. Харчова промисловість.

  2. Медицина.

  1. Сільське господарство.

  2. Охорона навколишнього середовища, енергетика. 5. Біотехнологія і майбутнє.

1. Етапи становлення біотехнології як науки та галузі виробництва

Біотехнологія (від грецького biosжиття, techneмистецтво, майстерність і logosслово, навчання) — це використання живих організмів і біологічних процесів у виробництві.

З найдавніших часів людина використовувала біотехнологічні процеси при хлібопечінні, приготуванні кисломолочних продуктів, у виноробстві і т. д., але лише завдяки роботам Л. Пастера в середині XIX ст., що довели зв'язок процесів шумування (бродіння) з діяльністю мікроорганізмів, традиційна біотехнологія одержала наукову основу. У 40—50-ті роки XX ст., коли був здійснений біосинтез пеніцилінів методами ферментації, почалася ера антибіотиків, що дала поштовх розвитку мікробіологічного синтезу і створенню мікробіологічної промисловості. У 60—70-ті роки XX ст. почала бурхливо розвиватися клітинна інженерія. Зі створенням у 1972 групою П. Берга в США першої гібридної молекули ДНК in vitro формально пов'язане народження генетичної інженерії, що відкрила шлях до свідомої зміни генетичної структури організмів таким чином, щоб ці організми могли робити необхідні людині продукти і здійснювати необхідні процеси. Ці два напрями визначили образ нової біотехнології, що майже не має нічого спільного з тією примітивною біотехнологією, яку людина використовувала протягом тисячоліть. Показово, що в 70-ті роки одержав поширення і самий термін "біотехнологія". З цього часу біотехнологія нерозривно пов'язана з молекулярною і клітинною біологією, молекулярною генетикою, біохімією і біоорганічною хімією. За стислий період свого розвитку (25—30 років) сучасна біотехнологія не тільки домоглася істотних успіхів, а і продемонструвала необмежені можливості використання організмів і біологічних процесів у різноманітних галузях виробництва.

2. Суть біотехнологічних процесів, їх відмінності, переваги і проблеми порівняно з традиційними технологічними процесами

Існує багато визначень поняття "біотехнологія", у чомусь схожих, але інколи суттєво відмінних.

Найбільш повне таке визначення: біотехнологія це застосування наукових та інженерних принципів для переробки речовин органічної і неорганічної природи біологічними агентами з метою одержання цінних продуктів та послуг. Біологічними агентами можуть бути будь-які природні біокаталізатори — клітини мікроорганізмів, рослин чи тварин або ферменти, що містяться в них.

Чому ж клітини можуть легко перетворювати речовини будь-якої природи — і при цьому таким чином, що з ними не в змозі конкурувати навіть завод з найсучаснішою могутньою апаратурою? Справа в тому, що будь-яка клітина містить набір різноманітних біокаталізаторів — ферментів. Це спеціалізовані макромолекули білку, здатні каталізувати перетворення різних речовин. Реакції, що проходять при фізичних і хімічних умовах, сумісних з біологічним життям, були б неможливі без ферментів. Підрахували, що фермент здатний здійснити 100 тис. молекулярних перетворень за хвилину, ці ж реакції без ферменту тривали б 10 млрд. років!

Мільйони років біологічної еволюції довели до досконалості унікальну білкову структуру ферменту. Насамперед біокаталізатори — це високоспецифічні системи. Кожен фермент є каталізатором хімічної реакції певного типу. Ця унікальна здатність приводить до того, що реакції, які каталізуються ферментами, йдуть з 100%-м виходом і без побічних продуктів, чого неймовірно важко досягти без біокаталізатора. Саме завдяки найтоншій специфічності цього процесу можлива сувора координація та впорядкованість тисяч реакцій, здійснюваних у живій клітині.

Друга істотна перевага ферментів — їх висока каталітична активність. Наприклад, амілаза, що каталізує розщеплення крохмалю, здійснює гідроліз 11*10 молекул субстрату за хвилину. Присутній в еритроцитах фермент карбоангідраза за цей же час встигає з'єднати воєдино 36 млн. молекул вуглекислого газу і води. І при цьому така фантастична ефективність каталізу реалізується в дуже помірних, з погляду хімії, зовнішніх умовах: невисока температура, фізіологічні значення рН, нормальний атмосферний тиск.

Клітини мікроорганізмів мають унікальну властивість — здатність до швидкого росту і розмноження. Усього лише за 20—30 хв. бактеріальна клітина збільшується в розмірі вдвічі і поділяється навпіл. Клітина тваринного організму проходить цей цикл за 24 години. Якщо зовнішні умови сприятливі для мікроорганізмів, розвиток клітини вступає у фазу інтенсивного розмноження і їхня чисельність зростає в геометричній прогресії. Якщо клітина ділиться через кожні 20 хв, за добу вона дасть потомство, що дорівнює 4,7 ' 102' клітинам. Через таку швидкість росту обмін речовин бактеріальної клітини відрізняється високою інтенсивністю. Для забезпечення своїх біосинтетичних потреб бактерія зацікавлена в надходженні живильних речовин ззовні з такою швидкістю, що не буде лімітувати нарощування маси клітин. А швидкість надходження речовин у клітину регулюється тонкою оболонкою — клітинною мембраною. Чим більша поверхня мембрани і менший внутрішній об'єм клітини, тим більша можливість надходження до неї живильних речовин в одиницю часу. Закони математики свідчать, що відношення зовнішньої поверхні до об'єму для структур типу сфери різко зменшується при збільшенні її діаметра. Тому саме в дрібних клітинах мікроорганізмів цей параметр найбільший. Він дорівнює 12 ' 104 м~' для бактерії, діаметр клітин якої 0,5 мкм. У людини масою 90 кг цей параметр менше майже в мільйон разів. Ось чому нарощування мікробної біомаси йде темпами, недоступними для тварин. Наприклад, корова, що важить 500 кг, за добу дає 0,5 кг білка. За такий же час 500 — кілограмова маса клітин дріжджів синтезує 50 т білкових речовин, а бактерії накопичують білок ще швидше, ніж дріжджі.

Завдяки специфічним властивостям мікроорганізмів істотні переваги біотехнологій порівняно з традиційними видами технологій приводять до наступного:

  • біотехнологічні процеси мають низьку енергоємність;

  • майже безвідходні та екологічно чисті;

  • не залежать від кліматичних умов, можуть проводитись протягом цілого року;

  • використовують незначні площі, що суттєво порівняно з сільськогосподарським виробництвом;

  • використовують стандартне устаткування і препарати,

У той же час розвиток промислової біотехнології (БТ) створює ряд екологічних проблем, що також повинно прийматися до уваги.

Особливістю БТ виробництва є невелике утворення твердих відходів при одночасному використанні великої кількості води і повітря (в аеробних процесах).

На будь-якому БТ виробництві постійно вирішується два завдання:

  • промислова асептика — усунення потрапляння сторонньої мікрофлори всередину біореактора;

  • виключення потрапляння мікробів — продуцентів у повітряні чи водяні викиди, тобто охорона навколишнього середовища.

Хоча у БТ використовуються тільки непатогенні штами мікробів, потрапляння клітин у живому і навіть у вбитому вигляді в повітряне середовище небажане, тому що може викликати алергічні реакції у населення. Для цього на підприємствах передбачено вологе очищення повітря, шо виходить із всіх апаратів.

Система водовикористання в БТ є більш складною, ніж навіть у хімічному виробництві, оскільки, крім оборотного водопостачання, необхідного для підтримки теплового режиму в біореакторах, потрібна велика кількість технологічної води для приготування живильних середовищ з дотриманням вимог ДСТ, а також для промивання, елюірування та інше.