
- •1. История развития. Этапы становления.
- •2.Определение (предмет) эконометрики.
- •3. Эконометрический метод и этапы эк-го исследования.
- •4. Измерения в эк-ке.
- •5. Парная регрессия и корреляция. Способы задания уравнения парной регрессии.
- •6. Линейная модель парной регрессии. Смысл и оценка параметров.
- •7. Оценка существенности пар-ов регрессии. Смысл и оценка пар-ов.
- •8. Корреляция и детерминация для линейной регрессии.
- •9. Прогноз по линейному ур-ию регрессии.
- •10. Средняя ошибка аппроксимации
- •11. Нелин.Регрессиия. Классы нелин.Регрессий. Нелин.Регрессия отн-но вкл-ых в анализ объясняющих пер-ых и по оцениваемым пар-ам.
- •2) Нелин.Рег-ия по оцениваемому коэф-ту.
- •12. Корреляция и детерминация для нелинейной регрессии (дисперс-й ан-з)
- •13. Коэффициенты эластичности для разных видов регрессионных моделей.
- •1. Выдвигаем нулевую гипотезу:
- •2. Наблюдаемое значение f-критерия Фишера (Fнабл) определяется по формуле:
- •3. Fтабл (α, k1, k2)
- •4. Сравниваем наблюдаемое и табличное значения. Делаем вывод:
- •15. Оценка адекватности модели
- •16. Множественная регрессия (спецификация модели).
- •17. Проблема мультиколленеарности.
- •18. Отбор факторов при построении множественной регрессии
- •20. Множественная корреляция
- •21. Частные уравнения регрессии
- •22. Частные коэффициенты корреляции
- •23. Оценка надежности результатов множественной регрессии и корреляции.
- •24. Частный f-критерий Фишера ( ) для уравнения множественной регрессии
- •26. Фиктивные переменные во множественной регрессии.
- •27, 28. Предпосылки мнк: гомоскедастичность, гетероскедастичность, автокорреляция остатков.
- •29. Метод наименьших квадратов. Обобщенный мнк.
- •I. Модель в натуральном и стандартизованном масштабе:
- •Множественная модель в натуральном масштабе (общий вид) запишется так:
- •Модель множественной регрессии в стандартизованном масштабе.
- •Мнк для модели в общем виде:
- •Мнк для модели в стандартизованном масштабе:
- •30. Общие понятия и необходимость использования систем эконометр-их уравнений. Формы и составляющие систем эконометрич-х уравнений.
- •31. Формы и составляющие систем эконометрич-х уравнений
- •32. Проблема идентификации. Необходимое и достаточное условие идентифицируемости
- •33. Методы оценки параметров систем уравнений: косвенный, двушаговый и трехшаговый методы.
- •34. Основные элементы временного ряда.
- •35. Автокорреляция уровней временного ряда и выявление его струк-ры.
- •36. Моделирование тенденции временного ряда
- •37. Моделирование сезонных и циклич колебаний
- •38.Автокорреляция в остатках. Критерий Дарбина-Уотсона
- •39. Методы исключения тенденции.
- •2 Основных метода:
- •1)Метод отклонения от тренда.
- •2)Метод последовательных разностей.
- •40. Динамические эконометрические модели
- •1.Харак-ка и интерпретация параметров модели с распределенным лагом.
- •Медианный шаг
- •41.Харак-ка модели с распределенным лагом.
- •Медианный шаг
- •42. Метод Койка и Лаги Алмон
26. Фиктивные переменные во множественной регрессии.
В некоторых задачах по эконометрике, может оказаться нужным включать в модель фактор, имеющий два или более качественных уровней. Это могут быть, например, разного рода атрибутивные признаки: профессия, образование, пол, климатические условия, проживание в определенном регионе.
Пример с фиктивными переменными
Чтобы использовать эти переменные в регрессионной модели, им должны быть присвоены цифровые метки, т. е. качественные переменные преобразованы в количественные. Такого вида сформированные переменные в эконометрике называют фиктивными переменными. В российской литературе по дисциплине эконометрика можно встретить термин «структурные переменные».
Рассмотрим использование фиктивных переменных для функции спроса. Предположим, что по группе лиц мужского и женского пола изучается линейная зависимость потребления кофе от цены. В общем виде для всех исследуемых данных уравнение регрессии имеет вид:
где у - количество потребляемого кофе; х — цена кофе.
Аналогичные уравнения находятся отдельно для лиц мужского пола:
и женского пола:
Разница в потреблении кофе проявятся в различии средних y1 и y2 . Вместе с тем сила влияния х на у может быть одинаковой. В этом случае можно построить общее уравнения регрессии с включением в него фактора «пол» в виде фиктивной переменной. Объединяя уравнения y1 и y2 и вводя фиктивные переменные, можно прийти к следующему выражению:
где z1 и z2 - фиктивные переменные, принимают значения:
z1 = 1 – мужской пол, 0 – женский пол.
z2 = 0 – мужской пол, 1 – женский пол.
В общем уравнении регрессии переменная у рассматривается как функция не только цены х, но также и пола (z1, z2). Переменная z рассматривается как дихотомическая переменная, которая принимает всего два значения: 1 и 0. При этом когда z1 = 1, то z2 = 0 и наоборот.
Для лиц мужского пола, когда z1 = 1 и z2 = 0, объединенное уравнение регрессии составит:
Для лиц женского пола, когда z1 = 0 и z2 = 1
Различия в потреблении для лиц мужского и женского пола обусловлены различиями свободных членов уравнения регрессии а. Параметр b является общим для всех лиц, как для мужчин, так и для женщин.
Следует иметь в виду, что при введении фиктивных переменных z1 и z2 в регрессионную модель применение МНК для оценивания параметров a1 и a2 в контрольные по эконометрике приведет к вырожденной матрице исходных данных, а значит к невозможности получения их оценок. Объясняется это тем, что при использовании МНК в таком уравнении появляется свободный член, т.е. уравнение принимает вид
Теоретические значения размера потребления кофе для мужского пола будут получены из уравнения
Для женского пола соответствующие значения получим из уравнения
Сравнивая эти результаты, видно, что различия в уровне потребления мужчин и женщин состоят в различии свободных членов данных уравнений: А - для женщин и А + А1 - для мужчин.