
- •Техническая термодинамика.
- •Газовая постоянная смеси газов.
- •Теплоемкость газов.
- •Сp и cv теплоемкости.
- •Постоянная, переменная и средняя теплоемкости.
- •Внутренняя энергия.
- •Энтальпия.
- •Работа расширения или сжатия.
- •Первый закон термодинамики.
- •Энтропия.
- •Водяной пар.
- •Компрессоры.
- •Одноступенчатый поршневой компрессор.
- •Многоступенчатый поршневой компрессор.
- •Тепловые двигатели.
- •Двигатели внутреннего сгорания.
- •Газотурбинные установки (гту).
- •Способы повышения термического кпд гту(ηt)
- •Политропный процесс.
- •Реальные газы.
- •Цикл паросиловой установки.
- •Принцип действия и устройство паросиловой установки.
- •Цикл Ренкина паросиловой установки.
- •Термодинамический анализ реального цикла Ренкина.
- •Цикл Карно насыщенного водяного пара.
- •Термодинамический анализ обратимого цикла Ренкина.
- •Теплофикационные циклы.
- •Парогазовые циклы.
- •Цикл ядерной энергетической установки.
- •Мгд генератором.
- •Влажный воздух.
- •Hd диаграмма влажного воздуха.
- •Автоматизация измерения и учета тепловой энергии.
- •Измерение и учет тепловой энергии.
- •Нормативная база, автоматизация теплоты и теплоносителей.
- •Структура узлов учета.
- •Задачи, решаемые для автоматизации учета.
- •Измерение температуры теплоносителей.
- •Основы теплопередачи. Теплообмен теплопроводностью.
- •Теплопроводность.
- •Коэффициент теплопроводности.
- •Теплопроводность через однослойную плоскую стенку.
- •Цилиндрическая стенка.
- •Тела сложной конфигурации.
- •Теплообмен конвекцией.
- •Теплоотдача в ограниченном объеме.
- •Теплообмен при вынужденной конвекции.
- •Особенности теплоотдачи.
- •Теплообмен излучением.
- •Законы излучения твердых тел.
- •Излучение газов.
- •Теплопередача.
- •Теплообменные аппараты.
- •Конструктивный и поверочный расчеты теплообменников.
- •Топливо. Состав и основные технические характеристики твердого топлива.
- •Холодильные установки.
- •Тепловой насос.
- •Общая характеристика котельной установки.
- •Тепловой баланс парогенератора.
Термодинамический анализ реального цикла Ренкина.
В реальном цикле существуют необратимые потери энергии, связанные в основном с потерями на трение при течении пара в проточной части турбины. В следствие этого уменьшается располагаемый перепад энтальпий h1–h2 до h1–h2 действит., а это приводит и к уменьшению полезной работы.
Необратимые потери кинетической энергии из-за трения в проточной части турбины учитываются внутренним относительным КПД турбины.
Внутренний
абсолютный КПД цикла, который равен
отношению действительного перепада
энтальпии ко всей теплоты подведенной
в цикле:
Для увеличения термического КПД цикла Ренкина необходимо увеличивать температуру пара и уменьшать температуру охлажденной воды в конденсаторе.
Цикл Карно насыщенного водяного пара.
Этот цикл можно в принципе осуществить следующим образом: теплота от горячего источника должна подводить при некоторой постоянной температуре Т1.
В результате вода т. 1 превращается в сухой насыщенный пар т.2.
В соответствии с циклом Карно затем сухой насыщенный пар должен адиабатно расширяться до температуре Т2.
Процесс 2–3 можно осуществить в паровой турбине, совершая техническую работу lт при этом сухой насыщенный пар т.2 превращается во влажный насыщенный.
Затем в соответствии с циклом с циклом Карно должен иметь место изотермический процесс 3– 4. Этот процесс возможно осуществить в конденсаторе турбины, где влажный насыщенный пар отдает теплоту холодному источнику, т.е. циркулирующей по его трубкам холодной воде в результате чего степень сухости пара уменьшается с х3 до х4.
Изотермы в области влажного насыщенного пара является одновременно и изобарами, поэтому процессы 1–2 и 3– 4 протекают при постоянных давлениях Р1 и Р2.
В соответствие с циклом Карно далее должен иметь место процесс адиабатного сжатия рабочего тела, который мог бы в принципе осуществлять компрессор (процесс 4–1). В результате влажный насыщенный пар превращается опять в воду.
На практике рассматриваемый цикл не принимается по тем причинам, что и классический цикл Карно в ДВС. К тому же расчеты показывают, что из-за потерь энергии на привод будет затрачиваться на привод будет затрачиваться большая часть мощности, вырабатываемой турбиной.
Значительно более удобно в реальном цикле конденсировать пар не до т.4, а до т.4/, а затем насосом увеличивать давление с Р2 до Р1 (адиабата 4/–1/). Такое изменение цикла приводит к существенному повышению его экономичности.
По сравнению с компрессором, затрачиваемая на привод насосом мощность, мощность оказывается в десятки раз меньше по сравнению с мощностью турбины. Т.е. практически вся мощность используется в качестве полезной.
Действительно, цикл Карно насыщенного водяного пара имеет низкий термический КПД из-за невысоких температур:
Pн=9,8 МПа tн=311;
t2=25C
Технико-экономические расчеты показывают, что дальнейшее увеличение Т1 и, соответственно, Р1 не целесообразно, т.к. мало увеличение температурного КПД, это приводит к дальнейшему усложнению и утяжелению оборудования.
Поэтому модифицированный цикл насыщенного пара применяется лишь ограниченно, в атомной энергетике, где перегрев связан с большими трудностями.