
- •1)Определители их свойства. Вычисление определителей.
- •2)Миноры и алгебраические дополнения. Расположение Лапласа
- •3)Решение систем линейных алгебраических уравнений методом Крамера. Метод Крамера
- •4) Матрицы и действия над ними
- •5) Ранг матрицы и способы его вычисления
- •6) Обратная матрица и ее вычисление
- •8) Решение систем линейных уравнений методом гаусса
- •9)Векторы. Линейные операции над векторами
- •10)Базисы на плоскости и в пространстве.
- •11)Вектор в декартовой системе координат, действия над векторами в координатной форме.
- •12)Полярная система координат. Связь между полярными и декартовыми координатами.
- •13)Скалярное произведение векторов и его свойства
- •14)Векторное произведение векторов, свойства
- •15) Смешанное произведение векторов, свойства
- •Свойства смешанного произведения:
- •16) Прямая линия на плоскости. Основные уравнение.
- •17) Нормальное уравнение прямой. Расстояние от точки до прямой.
- •18) Взаимное расположение двух прямых
- •19) Плоскость в пространстве, виды уравнений
- •20) Взаимное расположение двух плоскостей.
- •22) Прямая линия в пространстве. Основные уравнения.
- •Параметрическое уравнение прямой линии
- •Каноническое уравнение прямой линии в пространстве
- •Уравнение прямой линии в пространстве, проходящей через две заданные точки
- •Общее уравнение прямой линии в пространстве
- •23)Взаимное расположение прямой и плоскости
- •24) Эллипс. Каноническое уравнение.
- •25) Гипербола. Каноническое уравнение.
- •26)Парабола. Каноническое уравнение.
- •27)Комплексные чила и действия над ними Сложение и вычитание
- •Умножение комплексных чисел
- •Деление комплексных чисел
- •28)Тригонометрическая форма комплексного числа, операции с комплексными числами.
- •29) Возведение в степень комплексного числа
- •30)Извлечение корня из комплексного числа
- •31)Многочлены. Деление с остатком
- •Основная теорема алгебры
- •33)? Разложение многочлена на множители над множеством действительных и компланарных чисел. Разложение многочлена на множители в случае комплексных корней
- •Разложение правильных дробей на простые дроби для действительных корней
14)Векторное произведение векторов, свойства
Векторным
произведением векторов
и
называется
вектор
,
который определяется следующими
условиями:
1)
Его модуль равен
где
-
угол между векторами
и
.
2) Вектор перпендикулярен к плоскости, определяемой перемножаемыми векторами и .
3) Вектор направлен так, что наблюдателю, смотрящему с его конца на перемножаемые векторы и , кажется, что для кратчайшего совмещения первого сомножителя со вторым первый сомножитель нужно вращать против часовой стрелки (см. рисунок).
Векторное
произведение векторов
и
обозначается
символом
:
(25)
или
(26)
Основные свойства векторного произведения:
1) Векторное произведение равно нулю, если векторы и коллинеарны или какой-либо из перемножаемых векторов является нулевым.
2) При перестановке местами векторов сомножителей векторное произведение меняет знак на противоположный (см. рисунок):
Векторное произведение не обладает свойством переместительности.
15) Смешанное произведение векторов, свойства
Определение. Смешанным
произведением векторов
,
и
называется
число, равное скалярному произведению
вектора
на
вектор, равный векторному произведению
векторов
и
.
Обозначается
или
(
,
,
).
Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .
Свойства смешанного произведения:
1)Смешанное произведение равно нулю, если:
а)хоть один из векторов равен нулю;
б)два из векторов коллинеарны;
в)векторы компланарны.
2)
3)
4)
5) Объем треугольной пирамиды, образованной векторами , и , равен
6)Если
,
,
то
16) Прямая линия на плоскости. Основные уравнение.
Утверждение 1. Если на плоскости зафиксирована произвольная декартовая прямоугольная система Oxy то всякое уравнение первой степени с двумя переменными
в которых хотя бы одна из постоянных отлична от нуля, определяет относительно этой системы прямую линию.
Уравнение с произвольными коэффициентами и , первые два из которых не равны нулю одновременно, называется общим уравнением прямой.
Каноническое уравнение прямой
Любой ненулевой вектор, параллельный данной прямой называется направляющим вектором этой прямой. Каноническое уравнение можно получить, если запишем уравнение прямой проходящей через заданную точку в заданном направлении.
Параметрические уравнения прямой
Параметрическое уравнение прямой вытекает из канонического уравнения. Если в качестве постоянной взять переменный параметр , изменяющийся в диапазоне (бесконечная прямая), то, или окончательно
Уравнение прямой с угловым коэффициентом
Введем понятие угла наклона прямой к оси . Пусть прямая не параллельна оси и ее пересекает в точке . Выберем на оси точку лежащую по ту сторону от куда направлена ось . На прямой точку по ту сторону от куда направлена ось . Тогда углом наклона этой прямой к оси называется угол .
Если прямая и ось параллельны, то полагаем, что угол наклона .
Тангенс угла наклона прямой к оси назовем угловым коэффициентом этой прямой и обозначим . И так . Для прямой параллельной оси угловой коэффициент равен нулю.