
- •Подбор подшипников качения по статической грузоподъемности
- •Силовые соотношения в винтовой паре. Вывод формулы для определения момента трения в резьбе.
- •Виды повреждений зубчатых колес и меры их предупреждения
- •Общие требования, предъявляемые при проектировании деталей машин.
- •Вывод формулы проверочного расчета прямозубых цилиндрических передач на изгиб.
- •Подбор радиального шарикового подшипника по динамической грузоподъемности при наличии радиальной и осевой силы
- •Материалы, применяемые в машиностроении.
- •Расчет цилиндрических прямозубых передач на контактную прочность.
- •Геометрия и кинематика конических передач.
- •Геометрия зацепления колес.
- •Конструкция подшипников скольжения, требования к материалам и материалы вкладышей.
- •Подшипники качения, достоинства и недостатки. Разновидности и классификация.
- •Расчет косозубых цилиндрических передач на изгиб.
- •Определение допускаемых напряжений изгиба зубчатых колес.
- •Расчет валов на усталостную прочность
- •Резьбовые соединения. Виды резьб.
- •Материалы зубчатых колес и методы их термической и химико-термической обработки.
- •Основные сведения о зубчатых передачах. Геометрия и кинематика.
- •Эвольвента и эвольвентное зацепление. Геометрические соотношения в эвольвентном зубчатом зацеплении
Подбор подшипников качения по статической грузоподъемности
Значения базовой статической грузоподъемности для каждого подшипника заранее подсчитаны по формулам (1)-(4) и указаны в каталоге.
При расчете на статическую грузоподъемность проверяют, не будет ли статическая эквивалентная нагрузка на подшипник превосходить статическую грузоподъемность, указанную в каталоге:
Роr≤ Соrили Poa≤ Coa
При выборе и расчете подшипников следует иметь в виду, что допустимая статическая эквивалентная нагрузка Ро может быть меньше, равна или больше базовой статической грузоподъемности. Значение этой нагрузки зависит от требований к плавности хода, малошумности и к моменту трения, а также и от действительной геометрии поверхностей контакта. Чем выше перечисленные требования, тем меньше значение допустимой статической эквивалентной нагрузки.
Если не требуется высокая плавность хода, то возможно кратковременное повышение Por(Poa) до 2Cor(2Coa). При повышенных требованиях к плавности хода, малошумности и к стабильности момента трения рекомендуют уменьшить допускаемую статическую эквивалентную нагрузку Pоr(Pоа) до Cоr/ S0 (Соa/ S0). Коэффициент запаса S0 = 1,5 для упорных подшипников крановых крюков и подвесов; S0 = 2 для приборных прецизионных поворотных устройств; S0 = 4 для ответственных тяжелонагруженных опор и поворотных кругов.
Пример. Проверить пригодность подшипника 210 для следующих условий работы: вращение медленное (до 1об/мин) эпизодическое при действии нагрузки с составляющими: радиальной Fr = 9000Н и осевой Fo = 1600Н; требования к малошумности и плавности хода - высокие.
Решение. Базовая статическая радиальная грузоподъемность подшипника 210 по каталогу Соr= 19800Н. Для шарикового радиального однорядного подшипника в соответствии с табл. 59 X0 = 0,6 и Y0 = 0,5. Подставив в (5) и (6), получим
Por = X0Fr + Y0Fa = 0,6 · 9000 + 0,5 · 1600 = 6200H;
Por= Fr = 9000H.
Принимаем наибольшее значение Por= 9000H. Для шариковых подшипников с высокими требованиями к малошумности и плавности хода можно принять S0 = 2. Для таких условий работы должно выполняться соотношение Роr≤ Соr / S0. После подстановки получим:
9000 < 19800/2 = 9900.
Следовательно, для данных условий работы подшипник 210 пригоден.
Резьбовые соединения. Основные параметры резьб.
Соединения – разъемные (резьбовые, шпоночные, шлицевые) и неразъемные (заклепочные, клеевые, паяные, сварные, пресовые).
Резьбовые соединения - самый распространенный вид разъемных соединений. Они осуществляются с помощью крепежных резьбовых деталей (болтов, винтов, шпилек, гаек и т.п.)
Рис 2.1 Виды крепежных деталей: а) болтовое; б) винтовое;
в) шпиличное
Типы резьбы.
Если рассечь резьбовую часть плоскостью, проходящей через ось болта, винта, гайки, то в продольном сечении будет получен профиль резьбы. По типу профиля резьбы делятся на 5 основных типов: метрическая, упорная, трапецеидальная, прямоугольная, круглая
Параметры резьбы.
наружный
диаметр резьбы, который принимается за
номинальный.
внутренний
диаметр резьбы.
средний
диаметр (диаметр воображаемого цилиндра,
на поверхности которого ширина витка
равна ширине впадины).
Р
ис
2.3 Образование винтовой линии
Расстояние
в осевом направлении, на которое
перемещается резец за один оборот
заготовки называется ходом
резьбы
.
Расстояние
между одноименными сторонами профиля,
измеренное в осевом направлении на
среднем диаметре резьбы называется
шагом
заходность.
|
Угол
винтовой линии, измеренный на среднем
диаметре называется углом подъема
резьбы
.
|