
- •Введение
- •Эволюция ос.
- •Классификация ос.
- •Краткий обзор архитектуры Windows.
- •Основные системные файлы Windows 95, nt, 2000.
- •Средства аппаратной поддержки управления памятью.
- •Сегментная организация памяти.
- •Страничная или сегментно-страничная организация памяти.
- •Механизмы управления памятью Windows.
- •Раздел 4. В него загружаются ядро Windows nt и драйверы устройств. Этот раздел полностью защищен и по чтению, и по записи. Регионы в адресном пространстве.
- •Системные переменные и операционные системы.
- •Передача физической памяти региону.
- •Механизм выделения страниц физической памяти.
- •Выделение физической памяти под программный код.
- •Атрибуты защиты страниц.
- •Стек потока.
- •Стек потока под Windows 95, 98.
- •Функции компилятора для контроля стека.
- •Кучи (Heaps).
- •Особенности кучи в Windows 95, Windows nt.
- •Структура арены.
- •Рассмотрим функции работы с кучей.
- •Удаление кучи.
- •Выделение блока памяти в определённой куче.
- •Освобождение блока кучи.
- •Дополнительные кучи Win32 процесса.
- •Создание дополнительных куч для эффективного управления памятью.
- •Локальный доступ. Создание дополнительных куч для локализации доступа.
- •Файлы проецируемые в память (фпвп).
- •Проецирование в память exe и dll файлов.
- •Совместное использование статических данных несколькими экземплярами exe и dll модулей.
- •Иерархия функций работы с памятью.
- •Объекты kernel32.Dll.
- •Процессы.
- •Структуры данных процесса.
- •Структура блока pdb.
- •Блок kprocess.
- •Блок переменных окружения (peb).
- •Переменная ядра, связанная с процессами.
- •Последовательность действий, выполняемых функцией CreateProcess.
- •Потоки.
- •Основные функции для работы с потоками.
- •Управляющие структуры ос для работы с потоками.
- •Описание структур управления потоками.
- •Управление потоками.
- •Лекция № 11
- •Функции Win32 связанные с планированием.
- •Учёт квантов времени.
- •Сценарий планирования.
- •Поток простоя.
- •Динамическое повышение приоритета потока.
- •Планирование потоков в системах с симметричной мультипроцессорной системой (smp).
- •Синхронизация.
- •Синхронизация потоков без использования объектов синхронизации.
- •Синхронизация потоков.
- •Критические секции.
- •Работа потока с несколькими критическими секциями.
- •Синхронизация объектов.
- •События со сбросом вручную.
- •События с автоматическим сбросом.
- •Модули.
- •Структура imte.
- •Структура modref.
- •Файлы. Формат pe файла.
- •Особенности ре формата:
- •Заголовок ре файла.
- •Основные секции исполняемого файла.
- •.Idata bfc0847d .Text jmp dword ptr [00040042 … call 00014408 (Вызов GetMessage) Прикладная программа
- •Импортирование ре файлов.
- •Эскпорт ре файлов.
- •Лекция № 15
- •Ресурсы ре файла.
- •Базовые поправки ре файла.
- •Файловые системы.
- •Загрузочный сектор.
- •Особенности ntfs.
- •Новые возможности ntfs.
- •Структура ntfs на диске.
- •Кластеры.
- •Главная таблица файлов.
- •Структура файловых ссылок.
- •Записи о файлах.
- •Индексация имён файлов.
- •Битовая карта.
- •Восстанавливаемость ntfs.
- •Журнал транзакций.
- •Записи контрольной точки.
- •Восстановление данных в ntfs.
- •Проход повтора.
- •Проход отмены.
- •Отказоустойчивость ntfs.
- •Словарь терминов.
Управление потоками.
Планирование потоков.
Синхронизация потоков.
В Windows реализована подсистема вытесняющего планирования на основе уровней приоритета. Всегда выполняется поток с наивысшим приоритетом к выполнению.
В многопроцессорных системах под Windows NT и Windows 2000 выбор потока для выполнения может быть ограничен набором процессоров, на которых он может работать. Этот метод называется привязкой к процессору (processor affinity). По умолчанию поток выполняется на любом процессоре. С помощью функций Win32 можно изменить привязку к процессорам.
Выбранный для выполнения поток работает в течение некоторого периода называемого квантом. После того, как истёк квант времени ОС будет искать другой поток с таким же уровнем приоритета или выше. Если таких нет, то ищет с меньшим приоритетом. В Windows 2000 потокам могут выделяться разные кванты времени. Поток также может не полностью использовать свой квант.
Как только другой поток с более высоким приоритетом готов к выполнению, текущий поток вытесняется даже если его квант не истёк.
Код Windows, отвечающий за планирование реализован в ядре ОС. Этот код рассредоточен по ядру, поэтому нет единого модуля или процедуры с названием планировщик. Совокупность процедур, выполняющих планирование называется диспетчером ядра.
Диспетчер ядра инициализируется следующими событиями.
Поток готов к выполнению, например, он только что создан или вышел из состояния ожидания.
Поток прекращает выполнение, когда его квант истёк или поток завершается, или поток переходит в состояние ожидания.
Приоритет потока изменяется, например, в результате вызова системного сервиса.
Изменяется привязка к процессорам выполняемого потока.
В любом из этих четырёх случаев Windows должна определить, какой поток должен выполняться следующим.
Выбрав новый поток Windows включает CONTEXT, текущее содержание регистров процессора переписывается в структуру CONTEXT, которая находится в TDB (ETHREAD).
Планирование в Windows осуществляется на уровне потоков, то есть ОС не волнует то, какому процессу принадлежит тот или иной поток.
Пример. Если у процесса А – 12 потоков, а у В – 2 потока, и все 14 потоков имеют один и тот же приоритет, то каждый поток получит 1/14 времени процессора. Windows не будет делить поровну время процессора между двумя процессами.
Уровни приоритета.
В Windows поддерживается 32 уровня приоритета от 0 до 31. Все приоритеты делятся на четыре класса. Класс приоритета присваивается процессу с помощью одного из флагов функции CreateProcess. Рассмотрим связь уровней приоритета с классами.
Класс |
Описание |
Флаг |
Уровень приоритета |
Idle |
приостановлен |
IDLE_PRIORITY_CLASS |
4 |
Normal |
нормальный |
NORMAL_PRIORITY_CLASS |
7-9 |
High |
высокий |
HIGH_PRIORITY_CLASS |
13 |
RealTime |
реального времени |
REALTIME_PRIORITY_CLASS |
24 |
Если при вызове процесса класс Normal, то система присваивает процессу класс Normal, если только родительский процесс не имел класс Idle.
Idle. Используется для системного потока, который обнуляет неиспользованные страницы памяти. Этот класс может использовать, например, ScreenSaver. Большую часть времени этот поток отсле-живает деятельность пользователя. Если он не использует компьютер, то хранитель экрана активи-зируется.
Normal. В основном все процессы работают с этим классом проиритета. Windows 95, 98 сама по-вышает уровень приоритета активного процесса.
High. Его следует использовать в случае крайней необходимости, например, в Windows приоритет High имеет менеджер задач. Такой приоритет устанавливается, чтобы прервать любой поль-зовательский процесс, даже если он вышел в непрерывный цикл.
RealTime. Практически никогда не используется. В ранних версиях Windows этот класс отсут-ствовал. Его не стоит использовать, так как системные потоки, использующие клавиатуру и мышь имеют меньший приоритет. Его следует использовать в нескольких случаях.
в приложении напрямую общаться с оборудованием, например в драйверах устройств.
если приложение выполняет быстротечную операцию, которую нельзя прервать.