
- •1. Краткий исторический обзор развития экспериментальных методов обследования и испытания зданий и сооружений.
- •2. Основные определения, классификация освидетельствований и испытаний сооружений.
- •3. Требования к строительным конструкциям и сооружениям.
- •4. Цели и задачи обследования и испытания сооружений.
- •5. Условность расчетных схем и ее взаимосвязь с реальной конструкцией.
- •6. Условность расчетных характеристик строительных материалов.
- •7. Цели и задачи статических испытаний несущих конструкций зданий и сооружений.
- •8. Выбор элементов для статических испытаний.
- •9. Выбор схем загружения для статических испытаний.
- •10. Главнейшие схемы загружения конструкций.
- •11. Распределение нагрузок при испытании плит.
- •12. Распределение нагрузок при испытании однопролетной балки.
- •13. Распределение нагрузок при испытании колонны перекрытия.
- •14. Распределение нагрузок при испытании фермам.
- •15. Распределение нагрузок при испытании арок и сводов.
- •16. Испытание зданий особыми нагрузками.
- •17. Нагрузка и ее разновидности при статических испытаниях.
- •18. Режимы статических испытаний.
- •19. Проведение статических испытаний.
- •20. Обработка результатов статических испытаний.
- •21. Анализ результатов статических испытаний.
- •22. Основы метрологии и стандартизации в строительстве.
- •23. Определим основные понятия, связанные с поверкой средств измерений.
- •24. Погрешностями измерений.
- •25. Основные метрологические характеристики средств измерений.
- •26. Этапы обследования строительных конструкций.
- •27. Инструменты, приспособления и приборы для обследования строительных конструкций.
- •28. Определение прочности бетона и камня.
- •29. Оценка деформаций конструкций и прочности материалов.
- •30. Оценка прочности металла.
- •31. Определение фактических нагрузок.
- •32. Составление обмерочных чертежей.
- •33. Составление дефектных ведомостей и таблиц.
- •34. Действительные условия работы конструкций.
- •35. Поверочные расчеты конструкций.
- •36. Заключение о техническом состоянии объекта.
- •37. Причины аварий и повреждений при проектировании.
- •38. Причины аварий и повреждений при изготовлении и монтаже конструкций.
- •39. Причины аварий и повреждений при неправильной эксплуатации.
- •40. Деформации стальных конструкций от повышенных температур и огня.
- •41. Деформации арматуры в железобетонных и армированных каменных конструкциях от повышенных температур и огня.
- •42. Деформации деревянных конструкций от повышенных температур к огня.
- •43. Влияние отрицательных температур на основания зданий.
- •44. Влияние отрицательных температур на конструкции зданий.
- •45. Коррозионное разрушение металлических и неметаллических (бетонных, каменных, деревянных, пластмассовых и др.) конструкций.
- •46. Характерные дефекты эксплуатируемых каменных строительных конструкций.
- •47. Характерные дефекты эксплуатируемых железобетонных строительных конструкций.
- •48. Характерные дефекты эксплуатируемых предварительно напряженных, железобетонных строительных конструкций.
- •49. Характерные дефекты эксплуатируемых металлических конструкций.
- •50. Причины возникновения трещин в конструкциях.
- •51. Диагностика обследуемых конструкций.
- •52. Наиболее уязвимые места в зданиях и сооружениях.
- •53. Деформация зданий, находящихся вблизи вновь построенных и на склонах.
- •54. Диагностика оснований и фундаментов.
- •55. Диагностика стен здания.
- •56. Диагностика перекрытий.
- •57. Особенности обследования промзданий с мостовыми кранами.
- •58. Структура заключения о техническом состоянии конструкций здания.
- •59. Что такое тензорезистор?
- •60. Как определяется коэффициент тензочувствительности?
- •61. Как работает тензометрический мост?
- •62. Дня чего предназначен компенсационный тензорезистор?
- •64. На чем основана методика определения прочности бетона, кирпича, paствopa, камня эталонным молотком Кашкарова?
- •67. Какие факторы влияют на определение прочности бетона?(есть)
- •71. Какими способами может осуществляться загружение модели фермы при статических испытаниях?
- •72. Как экспериментально определяются внутренние усилия в стержнях фермы по измеренным в них деформациям?
30. Оценка прочности металла.
Документом, подтверждающим качество металла, является сертификат на металл, электроды, сварочную проволоку, метизы и т. д. В сертификатах должно быть указано: завод-изготовитель, номер заказа, дата и номер плавки, класс (марка) стали, способ выплавки, степень раскисления, гарантированные характеристики и др. К ним обычно прилагаются акты результатов химического анализа, механических испытаний.
При отсутствии сертификатов или недостаточности имеющихся в них сведений необходимо проводить испытания образцов. Определяют следующие характеристики:
1. Химический состав стали (выявляют содержание углерода, кремния, марганца, серы, фосфора и мышьяка) в соответствии с ГОСТ 22636.1—87.
2. Предел текучести, временное сопротивление и относительное удлинение растяжением образцов по ГОСТ 1497—84*. Ударную вязкость для определенных температур и конструкций по СНиП 3.02.01—83.
3. Распределение сернистых включений способом отпечатка по Бауману по ГОСТ 10243—75 (для кипящих сталей).
4. Пробы для испытаний берутся отдельно для каждой партии металла и элементов одного вида проката: листа, уголка и т. д., одинаковых по номерам, толщинам и входящих в состав однотипных конструкций (ферм, балок, колонн) одной поставки.
Размеры образцов выбираются не меньше 100x50 мм. Их вырезают из фасонного проката вдоль направления прокатки, а из листового — поперек направления прокатки.
Стружка для химического анализа отбирается по всей толщине проката нё менее 50 г от одного элемента. Перед отбором стружки поверхность металла очищают от окалины, краски, грязи, ржавчины, масла и влаги до металлического блеска. Допускается отбор стружки сверлением на всю толщину проката в средней трети ширины элемента или полки профиля. На отобранную стружку составляют ведомость с указанием ряда, оси, элемента, профиля, места вырезки.
По результатам химического анализа определяют степень раскисления стали. Опасным видом разрушения стальных конструкций является хрупкое разрушение, так как оно может возникнуть при малых напряжениях. Причинами разрушения являются: низкая температура, концентраторы напряжений, наличие трещин, ударные и циклические нагрузки и качество стали.
Наименее стойкими против хрупкого разрушения являются кипящие стали ввиду повышенного содержания фосфора, серы, азота, кислорода и водорода. Конструкции, выполненные из таких сталей, должны быть заменены или усилены.
Допускается не проводить испытания металла, если напряжения в конструкциях меньше 165 МПа (1700 кг/см2) при температурах выше -30 0С и если они находятся в эксплуатации более трех лет.
По результатам статистической обработки данных испытаний вычисляется предел текучести или сопротивление стали.
Наибольшее применение в строительной практике для оценки прочности металла имеет прибор Польди ударного действия.
Наконечником прибора является шарик 2 диаметром 10 мм из твердой закаленной стали, дающий при ударе отпечаток одновременно на исследуемом металле 1 и на стальном эталонном бруске 3, твердость которого НВэт должна быть заранее определена. Для получения отпечатков ударяют молотком по верхнему торцу стержня 4.
Нахождение твердости НВ и определение прочности и марки металла производятся с помощью соответствующих таблиц. Для термически обработанных легированных сталей вводится поправочный коэффициент.
С помощью прибора Польди можно получать, однако, лишь ориентировочные характеристики. Но и с учетом этого применение прибора практически полезно, в особенности в следующих случаях:
- для ускоренной проверки однородности материала в различных элементах освидетельствуемых конструкций;
- при отбраковке (проверке марок металла) поступающих заготовок.